Do you want to publish a course? Click here

Optical vortices of slow light using tripod scheme

176   0   0.0 ( 0 )
 Added by Julius Ruseckas
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider propagation, storing and retrieval of slow light (probe beam) in a resonant atomic medium illuminated by two control laser beams of larger intensity. The probe and two control beams act on atoms in a tripod configuration of the light-matter coupling. The first control beam is allowed to have an orbital angular momentum (OAM). Application of the second vortex-free control laser ensures the adiabatic (lossles) propagation of the probe beam at the vortex core where the intensity of the first control laser goes to zero. Storing and release of the probe beam is accomplished by switching off and on the control laser beams leading to the transfer of the optical vortex from the first control beam to the regenerated probe field. A part of the stored probe beam remains frozen in the medium in the form of atomic spin excitations, the number of which increases with increasing the intensity of the second control laser. We analyse such losses in the regenerated probe beam and provide conditions for the optical vortex of the control beam to be transferred efficiently to the restored probe beam.



rate research

Read More

We predict that a photon condensate inside a dye-filled microcavity forms long-lived spatial structures that resemble vortices when incoherently excited by a focused pump orbiting around the cavity axis. The finely structured density of the condensates have a discrete rotational symmetry that is controlled by the orbital frequency of the pump spot and is phase-coherent over its full spatial extent despite the absence of any effective photon-photon interactions.
We investigate quantum nonlinear effects at a level of individual quanta in a double tripod atom-light coupling scheme involving two atomic Rydberg states. In such a scheme the slow light coherently coupled to strongly interacting Rydberg states represents a two-component or spinor light. The scheme provides additional possibilities for the control and manipulation of light quanta. A distinctive feature of the proposed setup is that it combines the spin-orbit coupling for the spinor slow light with an interaction between the photons, enabling generation of the second probe beam even when two-photon detuning is zero. Furthermore, the interaction between the photons can become repulsive if the one-photon detunings have opposite signs. This is different from a single ladder atom-light coupling scheme, in which the interaction between the photons is attractive for both positive and negative detunings, as long as the Rabi frequency of the control beam is not too large.
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four copropagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowing to minimize the losses at the vortex core of the control beams. In such a situation the atomic medium is transparent for a pair of copropagating probe fields, leading to the creation of two-component (spinor) slow light. We study the interaction between the probe fields when two control beams carry optical vortices of opposite helicity. As a result, a transfer of the optical vortex takes place from the control to the probe fields without switching off and on the control beams. This feature is missing in a single tripod scheme where the optical vortex can be transferred from the control to the probe field only during either the storage or retrieval of light.
108 - Boris A. Malomed 2021
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or cubic-quintic nonlinear terms, as well as linear potentials. The fractional diffraction is represented by fractional-order spatial derivatives of the Riesz type, defined in terms of the direct and inverse Fourier transform. In this form, it can be realized by spatial-domain light propagation in optical setups with a specially devised combination of mirrors, lenses, and phase masks. The results presented in the article were chiefly obtained in a numerical form. Some analytical findings are included too -- in particular, for fast moving solitons, and results produced by the variational approximation. Also briefly considered are dissipative solitons which are governed by the fractional complex Ginzburg-Landau equation.
Recent experiments have proved that the response to short laser pulses of common optical media, such as air or Oxygen, can be described by focusing Kerr and higher order nonlinearities of alternating signs. Such media support the propagation of steady solitary waves. We argue by both numerical and analytical computations that the low power fundamental bright solitons satisfy an equation of state which is similar to that of a degenerate gas of fermions at zero temperature. Considering in particular the propagation in both $O_2$ and air, we also find that the high power solutions behave like droplets of ordinary liquids. We then show how a grid of the fermionic light bubbles can be generated and forced to merge in a liquid droplet. This leads us to propose a set of experiments aimed at the production of both the fermionic and liquid phases of light, and at the demonstration of the transition from the former to the latter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا