Do you want to publish a course? Click here

From laterally modulated two-dimensional electron gas towards artificial graphene

119   0   0.0 ( 0 )
 Added by Lukas Nadvornik
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cyclotron resonance has been measured in far-infrared transmission of GaAs/Al$_x$Ga$_{1-x}$As heterostructures with an etched hexagonal lateral superlattice. Non-linear dependence of the resonance position on magnetic field was observed as well as its splitting into several modes. Our explanation, based on a perturbative calculation, describes the observed phenomena as a weak effect of the lateral potential on the two-dimensional electron gas. Using this approach, we found a correlation between parameters of the lateral patterning and the created effective potential and obtain thus insights on how the electronic miniband structure has been tuned. The miniband dispersion was calculated using a simplified model and allowed us to formulate four basic criteria that have to be satisfied to reach graphene-like physics in such systems.



rate research

Read More

At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potential with honeycomb symmetry can lead to the creation of isolated massless Dirac points with tunable Fermi velocity. We provide detailed theoretical estimates to realize such artificial graphene-like system and discuss an experimental realization in a modulation-doped GaAs quantum well. Ultra high-mobility electrons with linearly-dispersing bands might open new venues for the studies of Dirac-fermion physics in semiconductors.
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the direction of the density modulation is observed, i.e. perpendicular to the applied source-drain voltage. The polarity of the transverse voltage is independent of the polarity of the source-drain voltage, demonstrating rectification in the device. We find that the transverse voltage $U_{y}$ depends quadratically on the applied source-drain voltage and non-monotonically on the density modulation. The experimental results are discussed in the framework of a diffusion thermopower model.
163 - Likun Shi , Wenkai Lou , F. Cheng 2015
Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/In$_{x}$Ga$_{1-x}$As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band
Using the method developed in a recent paper (Euro. Phys. J. B 92.8 (2019): 1-28) we consider $1/f$ noise in two-dimensional electron gas (2DEG). The electron coherence length of the system is considered as a basic parameter for discretizing the space, inside which the dynamics of electrons is described by quantum mechanics, while for length scales much larger than it the dynamics is semi-classical. For our model, which is based on the Thomas-Fermi-Dirac approximation, there are two control parameters: temperature $T$ and the disorder strength ($Delta$). Our Monte Carlo studies show that the system exhibits $1/f$ noise related to the electronic avalanche size, which can serve as a model for describing the experimentally observed flicker noise in 2DEG. The power spectrum of our model scales with frequency with an exponent in the interval $0.3<alpha_{PS}<0.6$. We numerically show that the electronic avalanches are scale-invariant with power-law behaviors in and out of the metal-insulator transition line.
Using scanning gate microscopy (SGM), we probe the scattering between a beam of electrons and a two-dimensional electron gas (2DEG) as a function of the beams injection energy, and distance from the injection point. At low injection energies, we find electrons in the beam scatter by small-angles, as has been previously observed. At high injection energies, we find a surprising result: placing the SGM tip where it back-scatters electrons increases the differential conductance through the system. This effect is explained by a non-equilibrium distribution of electrons in a localized region of 2DEG near the injection point. Our data indicate that the spatial extent of this highly non-equilibrium distribution is within ~1 micrometer of the injection point. We approximate the non-equilibrium region as having an effective temperature that depends linearly upon injection energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا