Do you want to publish a course? Click here

A Parametrized Galaxy Catalog Simulator For Testing Cluster Finding, Mass Estimation and Photometric Redshift Estimation in Optical and Near Infrared Surveys

91   0   0.0 ( 0 )
 Added by Jeeseon Song
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a galaxy catalog simulator which turns N-body simulations with subhalos into multiband photometric mocks. The simulator assigns galaxy properties to each subhalo to reproduce the observed cluster galaxy halo occupation distribution, the radial and mass dependent variation in fractions of blue galaxies, the luminosity functions in clusters and the field, and the red-sequence in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Field galaxies are sampled from existing multiband photometric surveys using derived galaxy photometric redshifts. Parametrizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. We present an application of the catalog simulator to characterize the selection function of a galaxy cluster finder that utilizes the cluster red-sequence galaxy clustering on the sky, in terms of completeness and contamination. We estimate systematic uncertainties due to the observational uncertainties on our simulator parameters in determining the selection function using five different sets of modified catalogs. Our estimates indicate that these uncertainties are at the $le15$% level with current observational constraints on cluster galaxy populations and their evolution. In addition, we examine the $B_{gc}$ parameter as an optical mass indicator and measure the intrinsic scatter of the $B_{gc}$--mass relation to be approximately log normal with $sigma_{log_{10}M}sim0.25$. Finally, we present tests of a red sequence overdensity redshift estimator using both simulated and real data, showing that it delivers redshifts for massive clusters with $sim$2% accuracy out to redshifts $zsim0.5$ with SDSS-like datasets.



rate research

Read More

Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of a SN classifier that uses SN colors to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an AUC of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99$%$ SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.012 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0294$ without using a host-galaxy photo-z prior, and a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.0017 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0116$ using a host-galaxy photo-z prior. Assuming a flat $Lambda CDM$ model with $Omega_m=0.3$, we obtain $Omega_m$ of $0.305pm0.008$ (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter $sigma_mathrm{int}=0.11$) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.
We present and describe a catalog of galaxy photometric redshifts (photo-zs) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-zs and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for $sim$ 13 million objects classified as galaxies in the coadd with $r < 24.5$. The photo-z and photo-z error estimators are trained and validated on a sample of $sim 83,000$ galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the VIsible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than $sigma_{68} =0.031$. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
131 - J. Singal , M. Shmakova , B. Gerke 2011
We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey. It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of about 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.
208 - P. E. Freeman 2009
The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on par with previous analyses, and find that use of the Nystrom extension leads to a negligible loss of prediction accuracy relative to that achieved with the training sets. As in some previous analyses (e.g., Collister & Lahav 2004, Ball et al. 2008), we observe that our predictions are generally too high (low) in the low (high) redshift regimes. We demonstrate that this is a manifestation of attenuation bias, wherein measurement error (i.e., uncertainty in diffusion coordinates due to uncertainty in the measured fluxes/magnitudes) reduces the slope of the best-fit regression line. Mitigation of this bias is necessary if we are to use photometric redshift estimates produced by computationally efficient empirical methods in precision cosmology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا