No Arabic abstract
The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on par with previous analyses, and find that use of the Nystrom extension leads to a negligible loss of prediction accuracy relative to that achieved with the training sets. As in some previous analyses (e.g., Collister & Lahav 2004, Ball et al. 2008), we observe that our predictions are generally too high (low) in the low (high) redshift regimes. We demonstrate that this is a manifestation of attenuation bias, wherein measurement error (i.e., uncertainty in diffusion coordinates due to uncertainty in the measured fluxes/magnitudes) reduces the slope of the best-fit regression line. Mitigation of this bias is necessary if we are to use photometric redshift estimates produced by computationally efficient empirical methods in precision cosmology.
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of a SN classifier that uses SN colors to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an AUC of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99$%$ SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.012 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0294$ without using a host-galaxy photo-z prior, and a mean bias ($left<z_mathrm{phot}-z_mathrm{spec}right>$) of 0.0017 with $sigmaleft( frac{z_mathrm{phot}-z_mathrm{spec}}{1+z_mathrm{spec}}right) = 0.0116$ using a host-galaxy photo-z prior. Assuming a flat $Lambda CDM$ model with $Omega_m=0.3$, we obtain $Omega_m$ of $0.305pm0.008$ (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter $sigma_mathrm{int}=0.11$) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.
We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey. It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.
We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004), which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machine learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiments first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at https://github.com/IftachSadeh/ANNZ .
Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift calibration. Using self-organising maps (SOMs) we demonstrate that this spectroscopic compilation is sufficiently complete for KiDS, representing $99%$ of the effective 2D cosmic shear sample. We use the SOM to define a $100%$ represented `gold cosmic shear sample, per tomographic bin. Using mock simulations of KiDS and the spectroscopic training set, we estimate the uncertainty on the SOM redshift calibration, and find that photometric noise, sample variance, and spectroscopic selection effects (including redshift and magnitude incompleteness) induce a combined maximal scatter on the bias of the redshift distribution reconstruction ($Delta langle z rangle=langle z rangle_{rm est}-langle z rangle_{rm true}$) of $sigma_{Delta langle z rangle} leq 0.006$ in all tomographic bins. We show that the SOM calibration is unbiased in the cases of noiseless photometry and perfectly representative spectroscopic datasets, as expected from theory. The inclusion of both photometric noise and spectroscopic selection effects in our mock data introduces a maximal bias of $Delta langle z rangle =0.013pm0.006$, or $Delta langle z rangle leq 0.025$ at $97.5%$ confidence, once quality flags have been applied to the SOM. The method presented here represents a significant improvement over the previously adopted direct redshift calibration implementation for KiDS, owing to its diagnostic and quality assurance capabilities. The implementation of this method in future cosmic shear studies will allow better diagnosis, examination, and mitigation of systematic biases in photometric redshift calibration.
Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing twelve photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC). By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/under-breadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate (CDE) loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performancemetrics.