No Arabic abstract
Graphene phonons are measured as a function of electron doping via the addition of potassium adatoms. In the low doping regime, the in-plane carbon G-peak hardens and narrows with increasing doping, analogous to the trend seen in graphene doped via the field-effect. At high dopings, beyond those accessible by the field-effect, the G-peak strongly softens and broadens. This is interpreted as a dynamic, non-adiabatic renormalization of the phonon self-energy. At dopings between the light and heavily doped regimes, we find a robust inhomogeneous phase where the potassium coverage is segregated into regions of high and low density. The phonon energies, linewidths and tunability are remarkably similar for 1-4 layer graphene, but significantly different to doped bulk graphite.
Starting with twisted bilayer graphene, graphene-based moire materials have recently been established as a new platform for studying strong electron correlations. In this paper, we study twisted graphene monolayers on trilayer graphene and demonstrate that this system can host flat bands when the twist angle is close to the magic-angle of 1.16$^circ$. When monolayer graphene is twisted on ABA trilayer graphene, the flat bands are not isolated, but are intersected by a Dirac cone with a large Fermi velocity. In contrast, graphene twisted on ABC trilayer graphene (denoted AtABC) exhibits a gap between flat and remote bands. Since ABC trilayer graphene and twisted bilayer graphene are known to host broken-symmetry phases, we further investigate the ostensibly similar magic angle AtABC system. We study the effect of electron-electron interactions in AtABC using both Hartree theory and an atomic Hubbard theory to calculate the magnetic phase diagram as a function of doping, twist angle, and perpendicular electric field. Our analysis reveals a rich variety of magnetic orderings, including ferromagnetism and ferrimagnetism, and demonstrates that a perpendicular electric field makes AtABC more susceptible to magnetic ordering.
We study theoretically the effects of short-range electron-electron interactions on the electronic structure of graphene, in the presence of single substitutional impurities. Our computational approach is based on the $pi$ orbital tight-binding approximation for graphene, with the electron-electron interactions treated self-consistently at the level of the mean-field Hubbard model. We compare explicitly non-interacting and interacting cases with varying interaction strength and impurity potential strength. We focus in particular on the interaction-induced modifications in the local density of states around the impurity, which is a quantity that can be directly probed by scanning tunneling spectroscopy of doped graphene. We find that the resonant character of the impurity states near the Fermi level is enhanced by the interactions. Furthermore, the size of the energy gap, which opens at high-symmetry points of the Brillouin zone of the supercell upon doping, is significantly affected by the interactions. The details of this effect depend subtly on the supercell geometry. We use a perturbative model to explain these features and find quantitative agreement with numerical results.
Cold atoms in an optical lattice with brick-wall geometry have been used to mimic graphene, a two-dimensional material with characteristic Dirac excitations. Here we propose to bring such artificial graphene into the proximity of a second atomic layer with a square lattice geometry. For non-interacting fermions, we find that such bilayer system undergoes a phase transition from a graphene-like semi-metal phase, characterized by a band structure with Dirac points, to a gapped band insulator phase. In the presence of attractive interactions between fermions with pseudospin-1/2 degree of freedom, a competition between semi-metal and superfluid behavior is found at the mean-field level. Using the quantum Monte Carlo method, we also investigate the case of strong repulsive interactions. In the Mott phase, each layer exhibits a different amount of long-range magnetic order. Upon coupling both layers, a valence-bond crystal is formed at a critical coupling strength. Finally, we discuss how these bilayer systems could be realized in existing cold atom experiments.
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details of disorder. A new temperature regime of the interaction correction is observed where quantum interference is suppressed by intra-valley scattering. We determine the value of the interaction parameter, F_0 ~ -0.1, and show that its small value is due to the chiral nature of interacting electrons.
Twisted double bilayer graphene (TDBG) is an electric-field-tunable moire system, exhibiting electron correlated states and related temperature linear (T-linear) resistivity. The displacement field provides a new knob to in-situ tune the relative strength of electron interactions in TDBG, yielding not only a rich phase diagram but also the ability to investigate each phase individually. Here, we report a study of carrier density (n), displacement field (D) and twist angle dependence of T-linear resistivity in TDBG. For a large twist angle 1.5 degree where correlated insulating states are absent, we observe a T-linear resistivity (order of 10 Ohm per K) over a wide range of carrier density and its slope decreases with increasing of n before reaching the van Hove singularity, in agreement with acoustic phonon scattering model. The slope of T-linear resistivity is non-monotonically dependent on displacement field, with a single peak structure closely connected to single-particle van Hove Singularity (vHS) in TDBG. For an optimal twist angle of ~1.23 degree in the presence of correlated states, the slope of T-linear resistivity is found maximum at the boundary of the correlated halo regime (order of 100 Ohm per K), resulting a M shape displacement field dependence. The observation is beyond the phonon scattering model from single particle picture, and instead it suggests a strange metal behavior. We interpret the observation as a result of symmetry-breaking instability developed at quantum critical points where electron degeneracy changes. Our results demonstrate that TDBG is an ideal system to study the interplay between phonon and quantum criticality, and might help to map out the evolution of the order parameters for the ground states.