No Arabic abstract
We study a model of information aggregation and social learning recently proposed by Jadbabaie, Sandroni, and Tahbaz-Salehi, in which individual agents try to learn a correct state of the world by iteratively updating their beliefs using private observations and beliefs of their neighbors. No individual agents private signal might be informative enough to reveal the unknown state. As a result, agents share their beliefs with others in their social neighborhood to learn from each other. At every time step each agent receives a private signal, and computes a Bayesian posterior as an intermediate belief. The intermediate belief is then averaged with the belief of neighbors to form the individuals belief at next time step. We find a set of minimal sufficient conditions under which the agents will learn the unknown state and reach consensus on their beliefs without any assumption on the private signal structure. The key enabler is a result that shows that using this update, agents will eventually forecast the indefinite future correctly.
We present a deterministic model for on-line social networks (OSNs) based on transitivity and local knowledge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every existing node $x$, a new node appears which joins to the closed neighbour set of $x.$ The ILT model provably satisfies a number of both local and global properties that were observed in OSNs and other real-world complex networks, such as a densification power law, decreasing average distance, and higher clustering than in random graphs with the same average degree. Experimental studies of social networks demonstrate poor expansion properties as a consequence of the existence of communities with low number of inter-community edges. Bounds on the spectral gap for both the adjacency and normalized Laplacian matrices are proved for graphs arising from the ILT model, indicating such bad expansion properties. The cop and domination number are shown to remain the same as the graph from the initial time-step $G_0$, and the automorphism group of $G_0$ is a subgroup of the automorphism group of graphs generated at all later time-steps. A randomized version of the ILT model is presented, which exhibits a tuneable densification power law exponent, and maintains several properties of the deterministic model.
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the process of information diffusion. However, the opposite question, i.e., how does information diffusion process rebuild social networks, has been largely ignored. In this paper, we propose a new framework for understanding this reversing effect. Specifically, we first introduce a novel information diffusion model on social networks, by considering two types of individuals, i.e., smart and normal individuals, and two kinds of messages, true and false messages. Since social networks consist of human individuals, who have self-learning ability, in such a way that the trust of an individual to one of its neighbors increases (or decreases) if this individual received a true (or false) message from that neighbor. Based on such a simple self-learning mechanism, we prove that a social network can indeed become smarter, in terms of better distinguishing the true message from the false one. Moreover, we observe the emergence of social stratification based on the new model, i.e., the true messages initially posted by an individual closer to the smart one can be forwarded by more others, which is enhanced by the self-learning mechanism. We also find the crossover advantage, i.e., interconnection between two chain networks can make the related individuals possessing higher social influences, i.e., their messages can be forwarded by relatively more others. We obtained these results theoretically and validated them by simulations, which help better understand the reciprocity between social networks and information diffusion.
Social learning -by observing and copying others- is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is our ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of lab-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions, and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an unreflective copying bias, which limits their social learning to the output, rather than the process, of their peers reasoning -even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behavior through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.