Do you want to publish a course? Click here

Direct creation of micro-domains with positive and negative surface potential on hydroxyapatite coatings

122   0   0.0 ( 0 )
 Added by Tomas Plecenik
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method for the direct patterning of electrostatic potential at the surface of hydroxyapatite is presented here. Micro-domains of surface potential have been created on hydroxyapatite coatings by a 20 keV focused electron beam with minimal alterations of surface chemistry. The success of such approach has been confirmed by Kelvin Probe Force Microscopy measurements, which show that this method is capable of creating micron sized positive and negative local electrostatic potential. The shape and potential difference of these domains were found to depend on the dose of total injected charge from the electron beam as well as the speed with which such charge is injected.



rate research

Read More

Intracellular access with high spatiotemporal resolution can enhance our understanding of how neurons or cardiomyocytes regulate and orchestrate network activity, and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly to extracellular potential amplitudes with time. Here, we report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. We report large action potential amplitudes that are indicative of intracellular access from 3D tissue-like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. Our findings are validated with cross-sectional microscopy, pharmacology, and electrical interventions. Our experiments and simulations demonstrate that individual electrical addressability of nanowires is necessary for high-fidelity intracellular electrophysiological recordings. This study advances our understanding of and control over high-quality multi-channel intracellular recordings, and paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.
The bio-inertness of titanium and its alloys attracts their use as bone implants. However a bioactive coating is usually necessary for improving the bone bonding of such implants. In this study, electrophoretic deposition(EPD) of hydroxyapatite (HA) powder on titanium plate was performed using butanol as solvent under direct current (DC) and alternating current (AC) fields. The zeta potential of the suspensions was measured to understand their stability and the charge on the particles. Coating thickness was varied by adjusting the voltage and time of deposition. Surface morphology and cross section thickness were studied using scanning electron microscopy and image analysis software. Surface crack density was calculated from the micrographs. The results showed that the samples of similar thickness have higher grain density when coated using AC as compared to DC EPD. This facile but novel test proves the capability of AC-EPD to attain denser and uniform HA coatings from non-aqueous medium.
Additive manufacturing (AM) techniques have gained interest in the tissue engineering field thanks to their versatility and unique possibilities of producing constructs with complex macroscopic geometries and defined patterns. Recently, composite materials - namely heterogeneous biomaterials identified as continuous phase (matrix) and reinforcement (filler) - have been proposed as inks that can be processed by AM to obtain scaffolds with improved biomimetic and bioactive properties. Significant efforts have been dedicated to hydroxyapatite (HA)-reinforced composites, especially targeting bone tissue engineering, thanks to the chemical similarities of HA with respect to mineral components of native mineralized tissues. Here we review applications of AM techniques to process HA-reinforced composites and biocomposites for the production of scaffolds with biological matrices, including cellular tissues. The primary outcomes of recent investigations in terms of morphological, structural, and in vitro and in vivo biological properties of the materials are discussed. We classify the approaches based on the nature of the matrices employed to embed the HA reinforcements and produce the tissue substitutes and report a critical discussion on the presented state of the art as well as the future perspectives, to offer a comprehensive picture of the strategies investigated as well as challenges in this emerging field.
Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of these systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial. This study explored these elements in the setting of blood flow over a micro-crevice using a multi-constituent numerical model of thrombosis. The simulations reproduced the platelet deposition patterns observed experimentally and elucidated the role of flow, shear rate, and surface chemistry in shaping the deposition. The results offer insights for design and operation of blood-contacting devices.
We observe variations on the surface potential of graphite samples that we attribute to the adsorption physisorption of tetracene isomers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا