Do you want to publish a course? Click here

AC vs. DC Electrophoretic Deposition of Hydroxyapatite on Titanium

145   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bio-inertness of titanium and its alloys attracts their use as bone implants. However a bioactive coating is usually necessary for improving the bone bonding of such implants. In this study, electrophoretic deposition(EPD) of hydroxyapatite (HA) powder on titanium plate was performed using butanol as solvent under direct current (DC) and alternating current (AC) fields. The zeta potential of the suspensions was measured to understand their stability and the charge on the particles. Coating thickness was varied by adjusting the voltage and time of deposition. Surface morphology and cross section thickness were studied using scanning electron microscopy and image analysis software. Surface crack density was calculated from the micrographs. The results showed that the samples of similar thickness have higher grain density when coated using AC as compared to DC EPD. This facile but novel test proves the capability of AC-EPD to attain denser and uniform HA coatings from non-aqueous medium.



rate research

Read More

The dispersion of anatase phase TiO2 powder in aqueous suspensions was investigated by zeta-potential and agglomerate size analysis. The iso-electric point (IEP) of anatase was determined to be at pH 2.8 using monoprotic acids for pH adjustment. In comparison, it was found that the use of carboxylic acids, citric and oxalic, caused a decrease in zeta-potential through the adsorption of negatively charged groups to the particle surfaces. The use of these reagents was shown to enable effective anodic electrophoretic deposition (EPD) of TiO2 onto graphite substrates at low pH levels with a decreased level of bubble damage in comparison with anodic EPD from basic suspensions. The results obtained demonstrate that the IEP of TiO2 varies with the type of reagent used for pH adjustment. The low pH level of the IEP and the ability to decrease the zeta-potential through the use of carboxylic acids suggest that the anodic EPD of anatase is more readily facilitated than cathodic EPD.
Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for the site selective deposition influenced the properties of the deposited flakes. In particular, we investigated the effect of different suspension medium used during the deposition both in the efficiency of the process and in the stability of WS2 flakes, which were deposited on a ordered arrays of plasmonic nanostructures.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex-situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
Sigma-phase intermetallic compound of Fe54Cr46 was investigated using DC and AC magnetic susceptibility techniques. A clear-cut evidence was found that the sample orders magnetically at Tc=23.5 K and its ground magnetic state is constituted by a spin glass. The temperature at which the zero-field cooled magnetization has its maximum decreases with an external magnetic field in line with the Gabay-Toulouse prediction. The temperature at which the AC magnetic susceptibility has its maximum does not depend on frequency which, in the light of the mean-field theory, testifies to very long magnetic interactions.
Pulsed Laser Deposition (PLD) is widely used to grow epitaxial thin films of quantum materials such as complex oxides. Here, we use in-situ X-ray scattering to study homoepitaxy of SrTiO$_3$ by energetic (e-) and thermalized (th-) PLD. We find that e-PLD suppresses the lateral growth of two-dimensional islands, which suggests that energetic particles break up smaller islands. Fast interlayer transport occurs for both e-PLD and th-PLD, implying a process operating on sub-microsecond timescales that doesnt depend strongly on the kinetic energy of the incident particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا