Do you want to publish a course? Click here

A Powerful AGN Outburst in RBS 797

212   0   0.0 ( 0 )
 Added by Kenneth Cavagnolo
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Utilizing $sim 50$ ks of Chandra X-ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large, and are consistent with elongated cavities lying close to our line-of-sight. We estimate a total AGN outburst energy and mean jet power of $approx 3 - 6 times 10^{60}$ erg and $approx 3 - 6 times 10^{45}$ erg s$^{-1}$, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is $sim 1 M_{odot}$ yr$^{-1}$. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The BCG harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of $approx 2 times 10^{44}$ erg s$^{-1}$. The nuclear emission is probably associated with a rapidly-accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks ($M sim 1.5$) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.



rate research

Read More

74 - P.E.J. Nulsen 2005
The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active galactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.
We present ~103 ks of Chandra observations of the galaxy cluster SPT-CLJ0528-5300 (SPT0528, z=0.768). This cluster harbors the most radio-loud (L_1.4GHz = 1.01 x 10^33 erg/s/Hz) central AGN of any cluster in the South Pole Telescope (SPT) SZ survey with available X-ray data. We find evidence of AGN-inflated cavities in the X-ray emission, which are consistent with the orientation of the jet direction revealed by ATCA radio data. The combined probability that two such depressions -- each at ~1.4-1.8sigma significance, oriented ~180 degrees apart and aligned with the jet axis -- would occur by chance is 0.1%. At >10^61 erg, the outburst in SPT0528 is among the most energetic known in the universe, and certainly the most powerful known at z>0.25. This work demonstrates that such powerful outbursts can be detected even in shallow X-ray exposures out to relatively high redshifts (z~0.8), providing an avenue for studying the evolution of extreme AGN feedback. The ratio of the cavity power (P_cav = 9.4+/-5.8 x 10^45 erg/s) to the cooling luminosity (L_cool = 1.5+/-0.5 x 10^44 erg/s) for SPT0528 is among the highest measured to date. If, in the future, additional systems are discovered at similar redshifts with equally high P_cav/L_cool ratios, it would imply that the feedback/cooling cycle was not as gentle at high redshifts as in the low-redshift universe.
107 - L. Ballo , V. Braito (1 2015
Galaxy merging is widely accepted to be a key driving factor in galaxy formation and evolution, while the feedback from AGN is thought to regulate the BH-bulge coevolution and the star formation process. In this context, we focused on 1SXPSJ050819.8+172149, a local (z=0.0175) Seyfert 1.9 galaxy (L_bol~4x10^43 ergs/s). The source belongs to an IR-luminous interacting pair of galaxies, characterized by a luminosity for the whole system (due to the combination of star formation and accretion) of log(L_IR/L_sun)=11.2. We present the first detailed description of the 0.3-10keV spectrum of 1SXPSJ050819.8+172149, monitored by Swift with 9 pointings performed in less than 1 month. The X-ray emission of 1SXPSJ050819.8+172149 is analysed by combining all the Swift pointings, for a total of ~72ks XRT net exposure. The averaged Swift-BAT spectrum from the 70-month survey is also analysed. The slope of the continuum is ~1.8, with an intrinsic column density NH~2.4x10^22 cm-2, and a deabsorbed luminosity L(2-10keV)~4x10^42 ergs/s. Our observations provide a tentative (2.1sigma) detection of a blue-shifted FeXXVI absorption line (rest-frame E~7.8 keV), suggesting the discovery for a new candidate powerful wind in this source. The physical properties of the outflow cannot be firmly assessed, due to the low statistics of the spectrum and to the observed energy of the line, too close to the higher boundary of the Swift-XRT bandpass. However, our analysis suggests that, if the detection is confirmed, the line could be associated with a high-velocity (vout~0.1c) outflow most likely launched within 80r_S. To our knowledge this is the first detection of a previously unknown ultrafast wind with Swift. The high NH suggested by the observed equivalent width of the line (EW~ -230eV, although with large uncertainties), would imply a kinetic output strong enough to be comparable to the AGN bolometric luminosity.
69 - P. E. J. Nulsen 2004
Deep Chandra observations of the Hydra A Cluster reveal a feature in the X-ray surface brightness that surrounds the 330 MHz radio lobes of the AGN at the cluster center. Surface brightness profiles of this feature and its close association with the radio lobes argue strongly that it is a shock front driven by the expanding radio lobes. The Chandra image also reveals other new structure on smaller scales that is associated with the radio source, including a large cavity and filament. The shock front extends 200 - 300 kpc from the AGN at the cluster center and its strength varies along the front, with Mach numbers in the range ~ 1.2 - 1.4. It is stronger where it is more distant from the cluster center, as expected for a shock driven by expanding radio lobes. Simple modeling gives an age for the shock front ~ 1.4times10^8 y and a total energy driving it of ~ 10^{61} erg. The mean mechanical power driving the shock is comparable to quasar luminosities, well in excess of that needed to regulate the cooling core in Hydra A. This suggests that the feedback regulating cooling cores is inefficient, in that the bulk of the energy is deposited beyond the cooling core. In that case, a significant part of cluster preheating is a byproduct of the regulation of cooling cores.
In some galaxy clusters powerful AGN have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Data obtained in 20.2 hours of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, that involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 muG in the inner lobes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا