Do you want to publish a course? Click here

Quantum chaos in one dimension?

116   0   0.0 ( 0 )
 Added by Imre Varga
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.



rate research

Read More

We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operation is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.
We consider analytical formulae that describe the chaotic regions around the main periodic orbit $(x=y=0)$ of the H{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas $2014$) we introduce new variables $(xi, eta)$ in which the product $xieta=c$ (constant) gives hyperbolic invariant curves. These hyperbolae are mapped by a canonical transformation $Phi$ to the plane $(x,y)$, giving Moser invariant curves. We find that the series $Phi$ are convergent up to a maximum value of $c=c_{max}$. We give estimates of the errors due to the finite truncation of the series and discuss how these errors affect the applicability of analytical computations. For values of the basic parameter $kappa$ of the H{e}non map smaller than a critical value, there is an island of stability, around a stable periodic orbit $S$, containing KAM invariant curves. The Moser curves for $c leq 0.32$ are completely outside the last KAM curve around $S$, the curves with $0.32<c<0.41$ intersect the last KAM curve and the curves with $0.41leq c< c_{max} simeq 0.49$ are completely inside the last KAM curve. All orbits in the chaotic region around the periodic orbit $(x=y=0)$, although they seem random, belong to Moser invariant curves, which, therefore define a structure of chaos. Orbits starting close and outside the last KAM curve remain close to it for a stickiness time that is estimated analytically using the series $Phi$. We finally calculate the periodic orbits that accumulate close to the homoclinic points, i.e. the points of intersection of the asymptotic curves from $x=y=0$, exploiting a method based on the self-intersections of the invariant Moser curves. We find that all the computed periodic orbits are generated from the stable orbit $S$ for smaller values of the H{e}non parameter $kappa$, i.e. they are all regular periodic orbits.
We develop a quantum model based on the correspondence between energy distribution between harmonic oscillators and the partition of an integer number. A proper choice of the interaction Hamiltonian acting within this manifold of states allows us to examine both the quantum typicality and the non-exponential relaxation in the same system. A quantitative agreement between the field-theoretical calculations and the exact diagonalization of the Hamiltonian is demonstrated.
The local density of states (LDOS) is a distribution that characterizes the effect of perturbations on quantum systems. Recently, it was proposed a semiclassical theory for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS witdth. Here, we test the validity of such an approximation in quantum maps varying the degree of chaoticity, the region in phase space where the perturbation is applying and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics.
We numerically investigate the characteristics of chaos evolution during wave packet spreading in two typical one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation model. Completing previous investigations cite{SGF13} we verify that chaotic dynamics is slowing down both for the so-called `weak and `strong chaos dynamical regimes encountered in these systems, without showing any signs of a crossover to regular dynamics. The value of the finite-time maximum Lyapunov exponent $Lambda$ decays in time $t$ as $Lambda propto t^{alpha_{Lambda}}$, with $alpha_{Lambda}$ being different from the $alpha_{Lambda}=-1$ value observed in cases of regular motion. In particular, $alpha_{Lambda}approx -0.25$ (weak chaos) and $alpha_{Lambda}approx -0.3$ (strong chaos) for both models, indicating the dynamical differences of the two regimes and the generality of the underlying chaotic mechanisms. The spatiotemporal evolution of the deviation vector associated with $Lambda$ reveals the meandering of chaotic seeds inside the wave packet, which is needed for obtaining the chaotization of the lattices excited part.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا