We develop a quantum model based on the correspondence between energy distribution between harmonic oscillators and the partition of an integer number. A proper choice of the interaction Hamiltonian acting within this manifold of states allows us to examine both the quantum typicality and the non-exponential relaxation in the same system. A quantitative agreement between the field-theoretical calculations and the exact diagonalization of the Hamiltonian is demonstrated.
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 19 (1949) 637]. Our predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.
We exemplify the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional so-called quantum droplets using an ab-initio nonperturbative approach. It is found that the droplet Gaussian-shaped configuration arising for intercomponent attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show that quantum fluctuations prevent the collapse of LHY fluids for larger atom numbers and a correlation hole is present in the few particle limit of these fluids as well as for flat-top droplets. Introducing mass-imbalance, droplets experience intercomponent mixing and excitation signatures are identified for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to stronger (weaker) attractions we explicate that beyond LHY correlations result in a reduced velocity (breathing frequency). Strikingly, the droplets feature two-body anti-correlations (correlations) at the same position (longer distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current ultracold atom experiments.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.
We demonstrate numerically the existence of a nontrivial topological Haldane phase for the one-dimensional extended ($U$-$V$) Hubbard model with a mean density of one particle per site, not only for bosons but also for anyons, despite a broken reflection parity symmetry. The Haldane insulator, surrounded by superfluid, Mott insulator and density-wave phases in the $V$-$U$ parameter plane, is protected by combined (modified) spatial-inversion and time-reversal symmetries, which is verified within our matrix-product-state based infinite density-matrix renormalization group scheme by analyzing generalized transfer matrices. With regard to an experimental verification of the anyonic Haldane insulator state the calculated asymmetry of the dynamical density structure factor should be of particular importance.