No Arabic abstract
Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $x leq 0.3$) to centered orthorhombic lattice (for $x geq 0.4$). The volume contraction thorough the series is comparable to the expected from the atomic size ratio between transition metal components. The consequent weak increase of the Kondo temperature drives the two transitions observed in Ce$_2$Pd$_2$Sn to merge at $x = 0.25$. After about a 1% of volume collapse at the structural modification, the system behaves as a weakly magnetic heavy fermion with an enhanced degenerate ground state. Notably, an incipient magnetic transition arises on the Ni-rich size. This unexpected behavior is discussed in terms of an enhancement of the density of states driven by the increase of the $4f$-conduction band hybridization and the incipient contribution of the first excited crystal field doublet on the ground state properties.
The role of slight changes of the chemical composition on antiferromagnetic ordering of Cr in rare-earth orthochoromites was investigated on a series of ceramic solid-solutions Ce$_{1-x}$Eu${_x}$O$_3$ where x varied from 0 to 1. Gradual replacement of Ce with Eu reduces the cell volume and acts equivalently to applying external pressure. Full replacement of Ce by Eu, on the other hand, reduces the N{e}el temperature from 260 K for CeCrO$_3$ to 178 K for EuCrO$_3$ as established by magnetization, heat capacity and neutron powder diffraction measurements. High resolution x-ray powder diffraction measurements on Ce$_{1-x}$Eu${_x}$O$_3$ and neutron powder diffraction studies on CeCrO$_3$ enable to correlate the magnetic properties of the Cr magnetic subsystem with the size of the lattice and minute changes of the bonding and torsion angles within and between the CrO$_6$ octahedra. We find that the sizes and the shapes of the CrO$6$ octahedra remain essentially unchanged as the size of the rare-earth cations is reduced whereas decreasing Cr - O - Cr bonding angles and increasing inclination of neighboring octahedra enable to compensate for the decreasing lattice size.
The Ce(1-x)LaxCrGe3 (x = 0, 0.19, 0.43, 0.58 and 1) intermetallic compound system has been investigated by magnetization measurements and neutron scattering techniques to determine the effect of La-doping on the magnetic ordering and exchange interaction between Cr ions. The structural and magnetic characterization in this series was first verified by X-ray diffraction and bulk magnetization measurements. The samples exhibit the known hexagonal perovskite structure (P63/mmc space group) and have a single magnetic phase according to magnetization measurements. In this work, the ferromagnetic ordering temperature for Cr evolves smoothly from a range of 68 K to 77 K for CeCrGe3 to a range of 91 K to 96 K for LaCrGe3 as La replaces Ce. Magnetization results indicate the formation of domain walls below the transition temperature for all the Ce(1-x)LaxCrGe3 systems investigated. Neutron results indicate ordered magnetic Cr moments aligned along the c axis for the x = 1 LaCrGe3 system, as well as for x = 0.19, 0.43, and 0.58, which contrasts with the x = 0 CeCrGe3 where the moments order in the ab plane.
We report a study of the structural and magnetic properties of single crystals of Ce$_2$IrGa$_{12}$. Ce$_2$IrGa$_{12}$ crystallizes in a layered tetragonal structure, and undergoes an antiferromagnetic transition below 3.1 K. We characterize the temperature-field phase diagrams of Ce$_2$IrGa$_{12}$ for fields both within the $ab$-plane and along the $c$-axis, where the presence of a field-induced magnetic phase is found for in-plane fields. The ordering temperature is moderately enhanced upon the application of pressures up to 2.3~GPa, suggesting that Ce$_2$IrGa$_{12}$ corresponds to the well localized region of the Doniach phase diagram.
We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crystals characterized by means of scanning electron microscopy, and powder x-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group $C2/m$ (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all crystallographic principal axes. Overall, the Neel temperature TN is non-monotonous, with increasing $Ni^{2+}$ doping the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn$_2$P$_2$S$_6$ (x = 0) up to x = 0.5, and then increases again to 155 K for pure Ni$_2$P$_2$S$_6$ (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ series. Transport studies under hydrostatic pressure on the parent compound Mn$_2$P$_2$S$_6$ evidence an insulator-metal transition at an applied critical pressure of ~22 GPa
An investigation of the structural, thermodynamic, and electronic transport properties of the isoelectronic chemical substitution series Ce(Pd$_{1-x}$Ni$_x$)$_2$P$_2$ is reported, where a possible ferromagnetic quantum critical point is uncovered in the temperature - concentration ($T-x$) phase diagram. This behavior results from the simultaneous contraction of the unit cell volume, which tunes the relative strengths of the Kondo and RKKY interactions, and the introduction of disorder through alloying. Near the critical region at $x_{rm{cr}}$ $approx$ 0.7, the rate of contraction of the unit cell volume strengthens, indicating that the cerium $f$-valence crosses over from trivalent to a non-integer value. Consistent with this picture, x-ray absorption spectroscopy measurements reveal that while CePd$_2$P$_2$ has a purely trivalent cerium $f$-state, CeNi$_2$P$_2$ has a small ($<$ 10 %) tetravalent contribution. In a broad region around $x_{rm{cr}}$, there is a breakdown of Fermi liquid temperature dependences, signaling the influence of quantum critical fluctuations and disorder effects. Measurements of clean CePd$_2$P$_2$ furthermore show that applied pressure has a similar initial effect to alloying on the ferromagnetic order. From these results, CePd$_2$P$_2$ emerges as a keystone system to test theories such as the Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where distinct behaviors are expected in the dirty and clean limits.