No Arabic abstract
An investigation of the structural, thermodynamic, and electronic transport properties of the isoelectronic chemical substitution series Ce(Pd$_{1-x}$Ni$_x$)$_2$P$_2$ is reported, where a possible ferromagnetic quantum critical point is uncovered in the temperature - concentration ($T-x$) phase diagram. This behavior results from the simultaneous contraction of the unit cell volume, which tunes the relative strengths of the Kondo and RKKY interactions, and the introduction of disorder through alloying. Near the critical region at $x_{rm{cr}}$ $approx$ 0.7, the rate of contraction of the unit cell volume strengthens, indicating that the cerium $f$-valence crosses over from trivalent to a non-integer value. Consistent with this picture, x-ray absorption spectroscopy measurements reveal that while CePd$_2$P$_2$ has a purely trivalent cerium $f$-state, CeNi$_2$P$_2$ has a small ($<$ 10 %) tetravalent contribution. In a broad region around $x_{rm{cr}}$, there is a breakdown of Fermi liquid temperature dependences, signaling the influence of quantum critical fluctuations and disorder effects. Measurements of clean CePd$_2$P$_2$ furthermore show that applied pressure has a similar initial effect to alloying on the ferromagnetic order. From these results, CePd$_2$P$_2$ emerges as a keystone system to test theories such as the Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where distinct behaviors are expected in the dirty and clean limits.
Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$ in order to study the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for $T leq$ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP ($rho(T) sim T^{3/2}$ and $gamma(T) sim gamma_0 - b T^{1/2}$). However, for 2 $leq T leq$ 10 K, the susceptibility and specific heat vary as $log T$ and the resistivity varies linearly with temperature. Furthermore, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. We suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.
The correlated electron material CePd$_2$P$_2$ crystallizes in the ThCr$_2$Si$_2$ structure and orders ferromagnetically at 29 K. Lai et al. [Phys. Rev. B 97, 224406 (2018)] found evidence for a ferromagnetic quantum critical point induced by chemical compression via substitution of Ni for Pd. However, disorder effects due to the chemical substitution interfere with a simple analysis of the possible critical behavior. In the present work, we examine the temperature - pressure - magnetic field phase diagram of single crystalline CePd$_2$P$_2$ to 25 GPa using a combination of resistivity, magnetic susceptibility, and x-ray diffraction measurements. We find that the ferromagnetism appears to be destroyed near 12 GPa, without any change in the crystal structure.
We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$, which is believed to be close to a quantum critical point (QCP) at T = 0. At lowest temperature(1.8-3.5 K), the magnetic susceptibility behaves as $chi(T)-chi (0)$ $propto$ $T^{-1/6}$ with $chi (0) = 0.032 times 10^{-6}$ m$^3$/mole (0.0025 emu/mole). For $T<$ 1 K, the specific heat can be fit to the formula $Delta C/T = gamma_0 - T^{1/2}$ with $gamma_0$ of order 700 mJ/mole-K$^2$. The resistivity behaves as $rho = rho_0 + AT^{3/2}$ for temperatures below 2 K. This low temperature behavior for $gamma (T)$ and $rho (T)$ is in accord with the SCR theory of Moriya and Takimotocite{Moriya}. The inelastic neutron scattering spectra show a broad peak near 1.5 meV that appears to be independent of $Q$; we interpret this as Kondo scattering with $T_K =$ 17 K. In addition, the scattering is enhanced near $Q$=(1/2, 1/2, 0) with maximum scattering at $Delta E$ = 0.45 meV; we interpret this as scattering from antiferromagnetic fluctuations near the antiferromagnetic QCP.
Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $x leq 0.3$) to centered orthorhombic lattice (for $x geq 0.4$). The volume contraction thorough the series is comparable to the expected from the atomic size ratio between transition metal components. The consequent weak increase of the Kondo temperature drives the two transitions observed in Ce$_2$Pd$_2$Sn to merge at $x = 0.25$. After about a 1% of volume collapse at the structural modification, the system behaves as a weakly magnetic heavy fermion with an enhanced degenerate ground state. Notably, an incipient magnetic transition arises on the Ni-rich size. This unexpected behavior is discussed in terms of an enhancement of the density of states driven by the increase of the $4f$-conduction band hybridization and the incipient contribution of the first excited crystal field doublet on the ground state properties.
We present the pressure-temperature phase diagram La$_5$Co$_2$Ge$_3$ up to $sim$ 5,GPa, which was constructed from magnetization, resistivity and specific heat measurements. At ambient pressure, La$_5$Co$_2$Ge$_3$ is an itinerant ferromagnet with a Curie temperature $T_textrm Csim$ 4,K. Upon increasing pressure up to $sim$ 1.7,GPa, $T_textrm C$ is suppressed down to $sim$ 3,K. Upon further increasing pressure, our results suggest that La$_5$Co$_2$Ge$_3$ enters a different low-temperature ground state. The corresponding transition temperature, $T^*$, has a nonmonotonic pressure dependence up to $sim$ 5,GPa. Our results demonstrate that the ferromagnetic quantum critical point in La$_5$Co$_2$Ge$_3$ is avoided by the appearance of a different, likely magnetically ordered state that has an antiferromagnetic component.