Do you want to publish a course? Click here

Mathematica with ROOT

99   0   0.0 ( 0 )
 Added by Sebastian White Phd
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an open-source Mathematica importer for CERN ROOT files. Taking advantage of Mathematicas import/export plug-in mechanism, the importer offers a simple, unified interface that cleanly wraps around its MathLink-based core that links the ROOT libraries with Mathematica. Among other tests for accuracy and efficiency, the importer has also been tested on a large (~5 Gbyte) file structure, D3PD, used by the ATLAS experiment for offline analysis without problems. In addition to describing the installation and usage of the importer, we discuss how the importer may be further improved and customized. A link to the package can be found at: http://library.wolfram.com/infocenter/Articles/7793/ and a related presentation is at: http://cd-docdb.fnal.gov/cgi-bin/DisplayMeeting?conferenceid=522



rate research

Read More

140 - Louis Lyons 2013
We discuss the traditional criterion for discovery in Particle Physics of requiring a significance corresponding to at least 5 sigma; and whether a more nuanced approach might be better.
98 - Dimitri Bourilkov 2019
The many ways in which machine and deep learning are transforming the analysis and simulation of data in particle physics are reviewed. The main methods based on boosted decision trees and various types of neural networks are introduced, and cutting-edge applications in the experimental and theoretical/phenomenological domains are highlighted. After describing the challenges in the application of these novel analysis techniques, the review concludes by discussing the interactions between physics and machine learning as a two-way street enriching both disciplines and helping to meet the present and future challenges of data-intensive science at the energy and intensity frontiers.
57 - Benoit Viaud 2016
Differential measurements of particle collisions or decays can provide stringent constraints on physics beyond the Standard Model of particle physics. In particular, the distributions of the kinematical and angular variables that characterise heavy me- son multibody decays are non trivial and can sign the underlying interaction physics. In the era of high luminosity opened by the advent of the Large Hadron Collider and of Flavor Factories, differential measurements are less and less dominated by statistical precision and require a precise determination of efficiencies that depend simultaneously on several variables and do not factorise in these variables. This docu- ment is a reflection on the potential of multivariate techniques for the determination of such multidimensional efficiencies. We carried out two case studies that show that multilayer perceptron neural networks can determine and correct for the distortions introduced by reconstruction and selection criteria in the multidimensional phase space of the decays $B^{0}rightarrow K^{*0}(rightarrow K^{+}pi^{-}) mu^{+}mu^{-}$ and $D^{0}rightarrow K^{-}pi^{+}pi^{+}pi^{-}$, at the price of a minimal analysis effort. We conclude that this method can already be used for measurements which statistical precision does not yet reach the percent level and that with more sophisticated machine learning methods, the aforementioned potential is very promising.
167 - Alexander Glazov 2017
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event by event basis. The method is implemented using a sequential neural network with a categorical cross entropy as the loss function. It is tested on a toy example and is shown to satisfy basic closure tests. Possible application of the method for analysis of the data from high energy physics experiments is discussed.
We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $approx 5%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا