No Arabic abstract
We investigate whether state-of-the-art classification features commonly used to distinguish electrons from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the performance of typical features, revealing a $approx 5%$ gap which indicates that these lower-level data do contain untapped classification power. To reveal the nature of this unused information, we use a recently developed technique to map the deep network into a space of physically interpretable observables. We identify two simple calorimeter observables which are not typically used for electron identification, but which mimic the decisions of the convolutional network and nearly close the performance gap.
Pions constitute nearly $70%$ of final state particles in ultra high energy collisions. They act as a probe to understand the statistical properties of Quantum Chromodynamics (QCD) matter i.e. Quark Gluon Plasma (QGP) created in such relativistic heavy ion collisions (HIC). Apart from this, direct photons are the most versatile tools to study relativistic HIC. They are produced, by various mechanisms, during the entire space-time history of the strongly interacting system. Direct photons provide measure of jet-quenching when compared with other quark or gluon jets. The $pi^{0}$ decay into two photons make the identification of non-correlated gamma coming from another process cumbersome in the Electromagnetic Calorimeter. We investigate the use of deep learning architecture for reconstruction and identification of single as well as multi particles showers produced in calorimeter by particles created in high energy collisions. We utilize the data of electromagnetic shower at calorimeter cell-level to train the network and show improvements for identification and characterization. These networks are fast and computationally inexpensive for particle shower identification and reconstruction for current and future experiments at particle colliders.
The many ways in which machine and deep learning are transforming the analysis and simulation of data in particle physics are reviewed. The main methods based on boosted decision trees and various types of neural networks are introduced, and cutting-edge applications in the experimental and theoretical/phenomenological domains are highlighted. After describing the challenges in the application of these novel analysis techniques, the review concludes by discussing the interactions between physics and machine learning as a two-way street enriching both disciplines and helping to meet the present and future challenges of data-intensive science at the energy and intensity frontiers.
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event by event basis. The method is implemented using a sequential neural network with a categorical cross entropy as the loss function. It is tested on a toy example and is shown to satisfy basic closure tests. Possible application of the method for analysis of the data from high energy physics experiments is discussed.
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms in particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. We demonstrate that the acceleration of machine learning inference as a web service represents a heterogeneous computing solution for particle physics experiments that potentially requires minimal modification to the current computing model. As examples, we retrain the ResNet-50 convolutional neural network to demonstrate state-of-the-art performance for top quark jet tagging at the LHC and apply a ResNet-50 model with transfer learning for neutrino event classification. Using Project Brainwave by Microsoft to accelerate the ResNet-50 image classification model, we achieve average inference times of 60 (10) milliseconds with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service, representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU inference in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600--700 inferences per second using an image batch of one, comparable to large batch-size GPU throughput and significantly better than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model, coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.
A number of scientific competitions have been organised in the last few years with the objective of discovering innovative techniques to perform typical High Energy Physics tasks, like event reconstruction, classification and new physics discovery. Four of these competitions are summarised in this chapter, from which guidelines on organising such events are derived. In addition, a choice of competition platforms and available datasets are described