Do you want to publish a course? Click here

Analysis of the infrared spectra of the peculiar post-AGB stars EPLyr and HD52961

129   0   0.0 ( 0 )
 Added by Clio Gielen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aim: We aim to study in detail the peculiar mineralogy and structure of the circumstellar environment of two binary post-AGB stars, EPLyr and HD52961. Both stars were selected from a larger sample of evolved disc sources observed with Spitzer and show unique solid-state and gas features in their infrared spectra. Moreover, they show a very small infrared excess in comparison with the other sample stars. Methods: The different dust and gas species are identified on the basis of high-resolution Spitzer-IRS spectra. We fit the full spectrum to constrain grain sizes and temperature distributions in the discs. This, combined with our broad-band spectral energy distribution and interferometric measurements, allows us to study the physical structure of the disc, using a self-consistent 2D radiative-transfer disc model. Results: We find that both stars have strong emission features due to CO_2 gas, dominated by ^{12}C^{16}O_2, but with clear ^{13}C^{16}O_2 and even ^{16}O^{12}C^{18}O isotopic signatures. Crystalline silicates are apparent in both sources but proved very hard to model. EP Lyr also shows evidence of mixed chemistry, with emission features of the rare class-C PAHs. Whether these PAHs reside in the oxygen-rich disc or in a carbon-rich outflow is still unclear. With the strongly processed silicates, the mixed chemistry and the low ^{12}C/^{13}C ratio, EP Lyr resembles some silicate J-type stars, although the depleted photosphere makes nucleosynthetic signatures difficult to probe. We find that the disc environment of both sources is, to a first approximation, well modelled with a passive disc, but additional physics such as grain settling, radial dust distributions, and an outflow component must be included to explain the details of the observed spectral energy distributions in both stars.



rate research

Read More

We selected a sample of post-AGB candidates in the Magellanic Clouds on the basis of their near- and mid-infrared colour characteristics. Fifteen of the most optically bright post-AGB candidates were observed with the South African Large Telescope in order to determine their stellar parameters and thus to validate or discriminate their nature as post-AGB objects in the Magellanic Clouds. The spectral types of absorption-line objects were estimated according to the MK classification, and effective temperatures were obtained by means of stellar atmosphere modelling. Emission-line objects were classified on the basis of the fluxes of the emission lines and the presence of the continuum. Out of 15 observed objects, only 4 appear to be genuine post-AGB stars (27%). In the SMC, 1 out of 4 is post-AGB, and in the LMC, 3 out 11 are post-AGB objects. Thus, we can conclude that the selected region in the colour-colour diagram, while selecting the genuine post-AGB objects, overlaps severely with other types of objects, in particular young stellar objects and planetary nebulae. Additional classification criteria are required to distinguish between post-AGB stars and other types of objects. In particular, photometry at far-IR wavelengths would greatly assist in distinguishing young stellar objects from evolved ones. On the other hand, we showed that the low-resolution optical spectra appear to be sufficient to determine whether the candidates are post-AGB objects.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the Planetary Nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of Post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of Post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the Proto-Planetary Nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology.The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic field observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
681 - Mikako Matsuura 2014
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme. We found that five post-AGB stars showed a broad feature with a peak at 7.7 micron, that had not been classified before. Further, the 10--13 micron PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 micron rather than two distinct sharp peaks at 11.3 and 12.7 micron, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to PNe, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا