Do you want to publish a course? Click here

Observations of binaries in AGB, post-AGB stars and Planetary Nebulae

142   0   0.0 ( 0 )
 Added by Eric Lagadec
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the last years, many observational studies have revealed that binaries play an active role in the shaping of non spherical planetary nebulae. We review the different works that lead to the direct or indirect evidence for the presence of binary companions during the Asymptotic Giant Branch, proto-Planetary Nebula and Planetary Nebula phases. We also discuss how these binaries can influence the stellar evolution and possible future directions in the field.



rate research

Read More

We intended to study the incidence and characteristics of water masers in the envelopes of stars in the post-AGB and PN evolutionary stages. We have used the 64-m antenna in Parkes (Australia) to search for water maser emission at 22 GHz, towards a sample of 74 sources with IRAS colours characteristic of post-AGB stars and PNe, at declination $< -32 deg$. In our sample, 39% of the sources are PNe or PNe candidates, and 50% are post-AGB stars or post-AGB candidates. We have detected four new water masers, all of them in optically obscured sources: three in PNe candidates (IRAS 12405-6219, IRAS 15103-5754, and IRAS 16333-4807); and one in a post-AGB candidate (IRAS 13500-6106). The PN candidate IRAS 15103-5754 has water fountain characteristics, and it could be the first PN of this class found. We confirm the tendency suggested in Paper I that the presence of water masers in the post-AGB phase is favoured in obscured sources with massive envelopes. We propose an evolutionary scenario for water masers in the post-AGB and PNe stages, in which ``water fountain masers could develop during post-AGB and early PN stages. Later PNe would show lower velocity maser emission, both along jets and close to the central objects, with only the central masers remaining in more evolved PNe.
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic field observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
77 - F. DellAgli 2020
Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from a small subset of extremely red objects (EROs). The analysis of EROs spectral energy distribution suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly higher than expected from theoretical modelling. We propose that binary interaction mechanisms that involve common envelope (CE) evolution could be a possible explanation for these peculiar stars; the CE phase is favoured by the rapid growth of the stellar radius occurring after C$/$O overcomes unity. Our modelling of the dust provides results consistent with the observations for mass-loss rates $dot M sim 5times 10^{-4}~dot M/$yr, a lower limit to the rapid loss of the envelope experienced in the CE phase. We propose that EROs could possibly hide binaries of orbital periods $sim$days and are likely to be responsible for a large fraction of the dust production rate in galaxies.
68 - Hans Van Winckel 2007
The specific characteristic of the SED of serendipitously discovered post-AGB binaries, allowed us to launch a very extensive multi-wavelength study of evolved objects, selected on the basis of very specific selection criteria. Those criteria were tuned to discover more stars with circumstellar dusty discs. The observational study includes radial velocity monitoring, high spectral resolution optical studies, infrared spectral dust studies, sub-mm bolometric observations and high spatial resolution interferometric experiments with the VLTI. In this contribution, we will review the preliminary results of this program showing that the binary rate is indeed very high. We argue that the formation of a stable circumbinary disc must play a lead role in the evolution of the systems.
123 - M. Hillen , J. Menu , B. de Vries 2014
Binaries with circumbinary disks are commonly found among optically bright post-AGB stars. Although clearly linked to binary interaction processes, the formation, evolution and fate of these disks are still badly understood. Due to their compactness, interferometric techniques are required to resolve them. Here, we discuss our high-quality multiwavelength interferometric data of two prototypical yet very different post-AGB binaries, AC and 89 Herculis, as well as the modeling thereof with radiative transfer models. A detailed account of the data and models of both objects is published in three separate papers elsewhere; here we focus on comparing the modeling results for the two objects. In particular we discuss the successes and limitations of the models which were developed for protoplanetary disks around young stars. We conclude that multiwavelength high-angular-resolution observations and radiative transfer disk models are indispensible to understand these complex interacting objects and their place in the grand scheme of the (binary) evolution of low and intermediate mass stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا