Do you want to publish a course? Click here

Rare earth spin ensemble magnetically coupled to a superconducting resonator

146   0   0.0 ( 0 )
 Added by Pavel Bushev
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum communication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.



rate research

Read More

Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins magnetically coupled to a superconducting resonator. We report on a cavity QED experiment with magnetically anisotropic Er3+:Y2SiO5 crystals and demonstrate strong coupling of rare-earth spins to a lumped element resonator. In addition, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without aid of a cavity.
We present cavity QED experiments with an Er:YSO crystal magnetically coupled to a 3D cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er$^{3+}$ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
Yttrium orthosilicate (Y$_2$SiO$_5$, or YSO) has proved to be a convenient host for rare-earth ions used in demonstrations of microwave quantum memories and optical memories with microwave interfaces, and shows promise for coherent microwave--optical conversion owing to its favourable optical and spin properties. The strong coupling required by such microwave applications could be achieved using superconducting resonators patterned directly on Y$_2$SiO$_5$, and hence we investigate here the use of Y$_2$SiO$_5$ as an alternative to sapphire or silicon substrates for superconducting hybrid device fabrication. A NbN resonator with frequency 6.008 GHz and low power quality factor $Q approx 400000$ was fabricated on a Y$_2$SiO$_5$ substrate doped with isotopically enriched Nd$^{145}$. Measurements of dielectric loss yield a loss-tangent $tandelta = 4 times 10^{-6}$, comparable to sapphire. Electron spin resonance (ESR) measurements performed using the resonator show the characteristic angular dependence expected from the anisotropic Nd$^{145}$ spin, and the coupling strength between resonator and electron spins is in the high cooperativity regime ($C = 30$). These results demonstrate Y$_2$SiO$_5$ as an excellent substrate for low-loss, high-Q microwave resonators, especially in applications for coupling to optically-accessible rare earth spins.
We demonstrate electron spin polarization detection and electron paramagnetic resonance (EPR) spectroscopy using a direct current superconducting quantum interference device (dc-SQUID) magnetometer. Our target electron spin ensemble is directly glued on the dc-SQUID magnetometer that detects electron spin polarization induced by a external magnetic field or EPR in micrometer-sized area. The minimum distinguishable number of polarized spins and sensing volume of the electron spin polarization detection and the EPR spectroscopy are estimated to be $sim$$10^6$ and $sim$$10^{-10}$ $mathrm{cm}^{3}$ ($sim$0.1 pl), respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا