Do you want to publish a course? Click here

Electron paramagnetic resonance spectroscopy using a dc-SQUID magnetometer directly coupled to an electron spin ensemble

61   0   0.0 ( 0 )
 Added by Hiraku Toida
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate electron spin polarization detection and electron paramagnetic resonance (EPR) spectroscopy using a direct current superconducting quantum interference device (dc-SQUID) magnetometer. Our target electron spin ensemble is directly glued on the dc-SQUID magnetometer that detects electron spin polarization induced by a external magnetic field or EPR in micrometer-sized area. The minimum distinguishable number of polarized spins and sensing volume of the electron spin polarization detection and the EPR spectroscopy are estimated to be $sim$$10^6$ and $sim$$10^{-10}$ $mathrm{cm}^{3}$ ($sim$0.1 pl), respectively.



rate research

Read More

A nitrogen-vacancy (NV) center in diamond is a promising sensor for nanoscale magnetic sensing. Here we report electron spin resonance (ESR) spectroscopy using a single NV center in diamond. First, using a 230 GHz ESR spectrometer, we performed ensemble ESR of a type-Ib sample crystal and identified a substitutional single nitrogen impurity as a major paramagnetic center in the sample crystal. Then, we carried out free-induction decay and spin echo measurements of the single NV center to study static and dynamic properties of nanoscale bath spins surrounding the NV center. We also measured ESR spectrum of the bath spins using double electron-electron resonance spectroscopy with the single NV center. The spectrum analysis of the NV-based ESR measurement identified that the detected spins are the nitrogen impurity spins. The experiment was also performed with several other single NV centers in the diamond sample and demonstrated that the properties of the bath spins are unique to the NV centers indicating the probe of spins in the microscopic volume using NV-based ESR. Finally, we discussed the number of spins detected by the NV-based ESR spectroscopy. By comparing the experimental result with simulation, we estimated the number of the detected spins to be $leq$ 50 spins.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum communication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.
Electron paramagnetic resonance (EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is a key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of unlabeled metalloproteins in a single cell. In conventional EPR spectrometers, the energy transfer from the spins to the cavity at a Purcell enhanced rate plays an essential role and requires the spins to be resonant with the cavity, however the size of the cavity (limited by the wavelength) makes it difficult to improve the spatial resolution. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages both in terms of its quantum properties and its much stronger coupling with magnetic fields. We have achieved a sensitivity of $sim$400 spins/$sqrt{mathrm{Hz}}$ with a magnetic sensing volume around $10^{-14} lambda^3$ (50 femto-liters). This corresponds to an improvement of two-order of magnitude in the magnetic sensing volume compared with the best cavity based spectrometers while maintaining a similar sensitivity as those spectrometers . Our artificial atom is suitable for scaling down and thus paves the way for measuring single spins on the nanometer scale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا