Do you want to publish a course? Click here

Spectral analysis of communication networks using Dirichlet eigenvalues

411   0   0.0 ( 0 )
 Added by Alexander Tsiatas
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

The spectral gap of the graph Laplacian with Dirichlet boundary conditions is computed for the graphs of several communication networks at the IP-layer, which are subgraphs of the much larger global IP-layer network. We show that the Dirichlet spectral gap of these networks is substantially larger than the standard spectral gap and is likely to remain non-zero in the infinite graph limit. We first prove this result for finite regular trees, and show that the Dirichlet spectral gap in the infinite tree limit converges to the spectral gap of the infinite tree. We also perform Dirichlet spectral clustering on the IP-layer networks and show that it often yields cuts near the network core that create genuine single-component clusters. This is much better than traditional spectral clustering where several disjoint fragments near the periphery are liable to be misleadingly classified as a single cluster. Spectral clustering is often used to identify bottlenecks or congestion; since congestion in these networks is known to peak at the core, our results suggest that Dirichlet spectral clustering may be better at finding bona-fide bottlenecks.



rate research

Read More

Let $H_{0, D}$ (resp., $H_{0,N}$) be the Schroedinger operator in constant magnetic field on the half-plane with Dirichlet (resp., Neumann) boundary conditions, and let $H_ell : = H_{0, ell} - V$, $ell =D,N$, where the scalar potential $V$ is non negative, bounded, does not vanish identically, and decays at infinity. We compare the distribution of the eigenvalues of $H_D$ and $H_N$ below the respective infima of the essential spectra. To this end, we construct effective Hamiltonians which govern the asymptotic behaviour of the discrete spectrum of $H_ell$ near $inf sigma_{ess}(H_ell) = inf sigma(H_{0,ell})$, $ell = D,N$. Applying these Hamiltonians, we show that $sigma_{disc}(H_D)$ is infinite even if $V$ has a compact support, while $sigma_{disc}(H_N)$ could be finite or infinite depending on the decay rate of $V$.
237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for addressing this problem. Recently a new perturbation approach has emerged, the idea being to perturb eigenvalues off the real line and, consequently, away from regions where the Galerkin method fails. We propose a simplified perturbation method which requires no a priori information and for which we provide a rigorous convergence analysis. The latter shows that, in general, our approach will significantly outperform the quadratic methods. We also present a new spectral enclosure for operators of the form $A+iB$ where $A$ is self-adjoint, $B$ is self-adjoint and bounded. This enables us to control, very precisely, how eigenvalues are perturbed from the real line. The main results are demonstrated with examples including magnetohydrodynamics, Schrodinger and Dirac operators.
We propose a method to efficiently estimate the Laplacian eigenvalues of an arbitrary, unknown network of interacting dynamical agents. The inputs to our estimation algorithm are measurements about the evolution of a collection of agents (potentially one) during a finite time horizon; notably, we do not require knowledge of which agents are contributing to our measurements. We propose a scalable algorithm to exactly recover a subset of the Laplacian eigenvalues from these measurements. These eigenvalues correspond directly to those Laplacian modes that are observable from our measurements. We show how our technique can be applied to networks of multiagent systems with arbitrary dynamics in both continuous- and discrete-time. Finally, we illustrate our results with numerical simulations.
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا