Do you want to publish a course? Click here

A factorization algorithm to compute Pfaffians

130   0   0.0 ( 0 )
 Added by Ulli Wolff
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an explicit algorithm to factorize an even antisymmetric N^2 matrix into triangular and trivial factors. This allows for a straight forward computation of Pfaffians (including their signs) at the cost of N^3/3 flops.



rate research

Read More

In this work we study the two and three-dimensional antiferromagnetic Ising model with an imaginary magnetic field $itheta$ at $theta=pi$. In order to perform numerical simulations of the system we introduce a new geometric algorithm not affected by the sign problem. Our results for the $2D$ model are in agreement with the analytical solutions. We also present new results for the $3D$ model which are qualitatively in agreement with mean-field predictions.
We describe an algorithm to compute the extremal eigenvalues and corresponding eigenvectors of a symmetric matrix by solving a sequence of Quadratic Binary Optimization problems. This algorithm is robust across many different classes of symmetric matrices, can compute the eigenvector/eigenvalue pair to essentially arbitrary precision, and with minor modifications can also solve the generalized eigenvalue problem. Performance is analyzed on small random matrices and selected larger matrices from practical applications.
In this article, we study algorithms for nonnegative matrix factorization (NMF) in various applications involving streaming data. Utilizing the continual nature of the data, we develop a fast two-stage algorithm for highly efficient and accurate NMF. In the first stage, an alternating non-negative least squares (ANLS) framework is used, in combination with active set method with warm-start strategy for the solution of subproblems. In the second stage, an interior point method is adopted to accelerate the local convergence. The convergence of the proposed algorithm is proved. The new algorithm is compared with some existing algorithms in benchmark tests using both real-world data and synthetic data. The results demonstrate the advantage of our algorithm in finding high-precision solutions.
We propose a new algorithm to compute the X-ray transform of an image represented by unit (pixel/voxel) basis functions. The fundamental issue is equivalently calculating the intersection lengths of the ray with associated units. For any given ray, we first derive the sufficient and necessary condition for non-vanishing intersectability. By this condition, we then distinguish the units that produce valid intersections with the ray. Only for those units rather than all the individuals, we calculate the intersection lengths by the obtained analytic formula. The proposed algorithm is adapted to 2D/3D parallel beam and 2D fan beam. Particularly, we derive the transformation formulas and generalize the algorithm to 3D circular and helical cone beams. Moreover, we discuss the intrinsic ambiguities of the problem itself, and present a solution. The algorithm not only possesses the adaptability with regard to the center position, scale and size of the image, but also is suited to parallelize with optimality. The comparison study demonstrates the proposed algorithm is fast, more complete, and is more flexible with respect to different scanning geometries and different basis functions. Finally, we validate the correctness of the algorithm by the aforementioned scanning geometries.
We present a new exact algorithm for estimating all elements of the quark propagator. The advantage of the method is that the exact all-to-all propagator is reproduced in a large but finite number of
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا