We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.
Macroscopic mechanical objects and electromagnetic degrees of freedom couple to each other via radiation pressure. Optomechanical systems with sufficiently strong coupling are predicted to exhibit quantum effects and are a topic of considerable interest. Devices reaching this regime would offer new types of control of the quantum state of both light and matter and would provide a new arena in which to explore the boundary between quantum and classical physics. Experiments to date have achieved sufficient optomechanical coupling to laser-cool mechanical devices but have not yet reached the quantum regime. The outstanding technical challenge in this field is integrating sensitive micromechanical elements (which must be small, light, and flexible) into high finesse cavities (which are typically much more rigid and massive) without compromising the mechanical or optical properties of either. A second, and more fundamental, challenge is to read out the mechanical elements quantum state: displacement measurements (no matter how sensitive) cannot determine the energy eigenstate of an oscillator, and measurements which couple to quantities other than displacement have been difficult to realize. Here we present a novel optomechanical system which seems to resolve both these challenges. We demonstrate a cavity which is detuned by the motion of a thin dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors. This approach segregates optical and mechanical functionality to physically distinct structures and avoids compromising either. It also allows for direct measurement of the square of the membranes displacement, and thus in principle the membranes energy eigenstate. We estimate it should be practical to use this scheme to observe quantum jumps of a mechanical system.
We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.
The quadrupole S$_{1/2}$ -- D$_{5/2}$ optical transition of a single trapped Ca$^+$ ion, well suited for encoding a quantum bit of information, is coherently coupled to the standing wave field of a high finesse cavity. The coupling is verified by observing the ions response to both spatial and temporal variations of the intracavity field. We also achieve deterministic coupling of the cavity mode to the ions vibrational state by selectively exciting vibrational state-changing transitions and by controlling the position of the ion in the standing wave field with nanometer-precision.
We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
C. Biancofiore
,M. Karuza
,M. Galassi
.
(2011)
.
"Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane"
.
David Vitali
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا