Do you want to publish a course? Click here

Raman spectroscopy of a single ion coupled to a high-finesse cavity

129   0   0.0 ( 0 )
 Added by Piet O. Schmidt
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.



rate research

Read More

The quadrupole S$_{1/2}$ -- D$_{5/2}$ optical transition of a single trapped Ca$^+$ ion, well suited for encoding a quantum bit of information, is coherently coupled to the standing wave field of a high finesse cavity. The coupling is verified by observing the ions response to both spatial and temporal variations of the intracavity field. We also achieve deterministic coupling of the cavity mode to the ions vibrational state by selectively exciting vibrational state-changing transitions and by controlling the position of the ion in the standing wave field with nanometer-precision.
Macroscopic mechanical objects and electromagnetic degrees of freedom couple to each other via radiation pressure. Optomechanical systems with sufficiently strong coupling are predicted to exhibit quantum effects and are a topic of considerable interest. Devices reaching this regime would offer new types of control of the quantum state of both light and matter and would provide a new arena in which to explore the boundary between quantum and classical physics. Experiments to date have achieved sufficient optomechanical coupling to laser-cool mechanical devices but have not yet reached the quantum regime. The outstanding technical challenge in this field is integrating sensitive micromechanical elements (which must be small, light, and flexible) into high finesse cavities (which are typically much more rigid and massive) without compromising the mechanical or optical properties of either. A second, and more fundamental, challenge is to read out the mechanical elements quantum state: displacement measurements (no matter how sensitive) cannot determine the energy eigenstate of an oscillator, and measurements which couple to quantities other than displacement have been difficult to realize. Here we present a novel optomechanical system which seems to resolve both these challenges. We demonstrate a cavity which is detuned by the motion of a thin dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors. This approach segregates optical and mechanical functionality to physically distinct structures and avoids compromising either. It also allows for direct measurement of the square of the membranes displacement, and thus in principle the membranes energy eigenstate. We estimate it should be practical to use this scheme to observe quantum jumps of a mechanical system.
We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.
When an off-resonant light field is coupled with atomic spins, its polarization can rotate depending on the direction of the spins via a Faraday rotation which has been used for monitoring and controlling the atomic spins. We observed Faraday rotation by an angle of more than 10 degrees for a single 1/2 nuclear spin of 171Yb atom in a high-finesse optical cavity. By employing the coupling between the single nuclear spin and a photon, we have also demonstrated that the spin can be projected or weakly measured through the projection of the transmitted single ancillary photon.
We present a numerical study of a MEMS-based design of a fiber cavity integrated with an ion trap system. Each fiber mirror is supported by a microactuator that controls the mirrors position in three dimensions. The mechanical stability is investigated by a feasibility analysis showing that the actuator offers a stable support of the fiber. The actuators move the fibers positions continuously with a stroke of more than 10 $mu$m, with mechanical resonance frequencies on the order of kHz. A calculation of the trapping potential shows that a separation between ion and fiber consistent with strong ion-cavity coupling is feasible. Our miniaturized ion-photon interface constitutes a viable approach to integrated hardware for quantum information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا