No Arabic abstract
Solar explosive events are commonly explained as small scale magnetic reconnection events, although unambiguous confirmation of this scenario remains elusive due to the lack of spatial resolution and of the statistical analysis of large enough samples of this type of events. In this work, we propose a sound statistical treatment of data cubes consisting of a temporal sequence of long slit spectra of the solar atmosphere. The analysis comprises all the stages from the explosive event detection to its characterization and the subsequent sample study. We have designed two complementary approaches based on the combination of standard statistical techniques (Robust Principal Component Analysis in one approach and wavelet decomposition and Independent Component Analysis in the second) in order to obtain least biased samples. These techniques are implemented in the spirit of letting the data speak for themselves. The analysis is carried out for two spectral lines: the C IV line at 1548.2 angstroms and the Ne VIII line at 770.4 angstroms. We find significant differences between the characteristics of the line profiles emitted in the proximities of two active regions, and in the quiet Sun, most visible in the relative importance of a separate population of red shifted profiles. We also find a higher frequency of explosive events near the active regions, and in the C IV line. The distribution of the explosive events characteristics is interpreted in the light of recent numerical simulations. Finally, we point out several regions of the parameter space where the reconnection model has to be refined in order to explain the observations.
We calculate the interplanetary magnetic field path lengths traveled by electrons in solar electron events detected by the WIND 3DP instrument from $1994$ to $2016$. The velocity dispersion analysis method is applied for electrons at energies of $sim$ $27$ keV to $310$ keV. Previous velocity dispersion analyses employ the onset times, which are often affected by instrumental effects and the pre-existing background flux, leading to large uncertainties. We propose a new method here. Instead of using the peak or onset time, we apply the velocity dispersion analysis to the times that correspond to the rising phase of the fluxes that are a fraction, $eta$, of the peak flux. We perform statistical analysis on selected events whose calculated path lengths have uncertainties smaller than $0.1$ AU. The mean and standard deviation, ($mu$, $sigma$), of the calculated path lengths corresponding to $eta=$ $3/4$, $1/2$, and $1/3$ of the peak flux is ($1.17$ AU, $0.17$ AU), ($1.11$ AU, $0.14$ AU), and ($1.06$ AU, $0.15$ AU). The distribution of the calculated path lengths is also well fitted by a Gaussian distribution for the $eta=3/4$ and $1/3$ cases. These results suggest that in these electron events the interplanetary magnetic field topology is close to the nominal Parker spiral with little field line meandering. Our results have important implications for particles perpendicular diffusion.
Large solar flares and eruptions may influence remote regions through perturbations in the outer-atmospheric magnetic field, leading to causally related events outside of the primary or triggering eruptions that are referred to as sympathetic events. We quantify the occurrence of sympathetic events using the full-disk observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory associated with all flares of GOES class M5 or larger from 01 May 2010 through 31 December 2014. Using a superposed-epoch analysis, we find an increase in the rate of flares, filament eruptions, and substantial sprays and surges more than 20 degrees away from the primary flares within the first four hours at a significance of 1.8 standard deviations. We also find that the rate of distant events drops by two standard deviations, or a factor of 1.2, when comparing intervals between 4 hours and 24 hours before and after the start times of the primary large flares. We discuss the evidence for the concluding hypothesis that the gradual evolution leading to the large flare and the impulsive release of the energy in that flare both contribute to the destabilization of magnetic configurations in distant active regions and quiet-Sun areas. These effects appear to leave distant regions, in an ensemble sense, in a more stable state, so that fewer energetic events happen for at least a day following large energetic events.
Solar energetic particle (SEP) events are related to flares and coronal mass ejections (CMEs). This work is a new investigation of statistical relationships between SEP peak intensities - deka-MeV protons and near-relativistic electrons - and characteristic quantities of the associated solar activity. We consider the speed of the CME and quantities describing the flare-related energy release: peak flux and fluence of soft X-ray (SXR) emission, fluence of microwave emission. The sample comprises 38 SEP events associated with strong SXR bursts (classes M and X) in the western solar hemisphere between 1997 and 2006, and where the flare-related particle acceleration is accompanied by radio bursts indicating electron escape to the interplanetary space. The main distinction of the present statistical analysis from earlier work is that besides the classical Pearson correlation coefficient the partial correlation coefficients are calculated in order to disentangle the effects of correlations between the solar parameters themselves. The classical correlation analysis shows the usual picture of correlations with broad scatter between SEP peak intensities and the different parameters of solar activity, and strong correlations between the solar activity parameters themselves. The partial correlation analysis shows that the only parameters that affect significantly the SEP intensity are the CME speed and the SXR fluence. The SXR peak flux and the microwave fluence have no additional contribution. We conclude that these findings bring statistical evidence that both flare acceleration and CME shock acceleration contribute to the deka-MeV proton and near-relativistic electron populations in large SEP events.
We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active regions. Functional dependence of polarity separation and maximum magnetic flux of an active region is in agreement with a simple model of flux emergence as the result of buoyancy forces. Our investigation did not reveal any strong dependence of emergence rate on twist properties of active regions.
We observe plasma flows in cool loops using the Slit-Jaw Imager (SJI) onboard the Interface Region Imaging Spectrometer (IRIS). Huang et al. (2015) observed unusually broadened Si IV 1403 angstrom line profiles at the footpoints of such loops that were attributed to signatures of explosive events (EEs). We have chosen one such uni-directional flowing cool loop system observed by IRIS where one of the footpoints is associated with significantly broadened Si IV line profiles. The line profile broadening indirectly indicates the occurrence of numerous EEs below the transition region (TR), while it directly infers a large velocity enhancement /perturbation further causing the plasma flows in the observed loop system. The observed features are implemented in a model atmosphere in which a low-lying bi-polar magnetic field system is perturbed in the chromosphere by a velocity pulse with a maximum amplitude of 200 km/s. The data-driven 2-D numerical simulation shows that the plasma motions evolve in a similar manner as observed by IRIS in the form of flowing plasma filling the skeleton of a cool loop system. We compare the spatio-temporal evolution of the cool loop system in the framework of our model with the observations, and conclude that their formation is mostly associated with the velocity response of the transient energy release above their footpoints in the chromosphere/TR. Our observations and modeling results suggest that the velocity responses most likely associated to the EEs could be one of the main candidates for the dynamics and energetics of the flowing cool loop systems in the lower solar atmosphere.