Do you want to publish a course? Click here

Velocity Response of the Observed Explosive Events in the Lower Solar Atmosphere: I. Formation of the Flowing Cool Loop System

76   0   0.0 ( 0 )
 Added by A.K. Srivastava Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe plasma flows in cool loops using the Slit-Jaw Imager (SJI) onboard the Interface Region Imaging Spectrometer (IRIS). Huang et al. (2015) observed unusually broadened Si IV 1403 angstrom line profiles at the footpoints of such loops that were attributed to signatures of explosive events (EEs). We have chosen one such uni-directional flowing cool loop system observed by IRIS where one of the footpoints is associated with significantly broadened Si IV line profiles. The line profile broadening indirectly indicates the occurrence of numerous EEs below the transition region (TR), while it directly infers a large velocity enhancement /perturbation further causing the plasma flows in the observed loop system. The observed features are implemented in a model atmosphere in which a low-lying bi-polar magnetic field system is perturbed in the chromosphere by a velocity pulse with a maximum amplitude of 200 km/s. The data-driven 2-D numerical simulation shows that the plasma motions evolve in a similar manner as observed by IRIS in the form of flowing plasma filling the skeleton of a cool loop system. We compare the spatio-temporal evolution of the cool loop system in the framework of our model with the observations, and conclude that their formation is mostly associated with the velocity response of the transient energy release above their footpoints in the chromosphere/TR. Our observations and modeling results suggest that the velocity responses most likely associated to the EEs could be one of the main candidates for the dynamics and energetics of the flowing cool loop systems in the lower solar atmosphere.



rate research

Read More

The recent rediscovery of magnetic field switchbacks or deflections embedded in the solar wind flow by the Parker Solar Probe mission lead to a huge interest in the modelling of the formation mechanisms and origin of these switchbacks. Several scenarios for their generation were put forth, ranging from lower solar atmospheric origins by reconnection, to being a manifestation of turbulence in the solar wind, and so on. Here we study some potential formation mechanisms of magnetic switchbacks in the lower solar atmosphere, using three-dimensional magneto-hydrodynamic (MHD) numerical simulations. The model is that of an intense flux tube in an open magnetic field region, aiming to represent a magnetic bright point opening up to an open coronal magnetic field structure, e.g. a coronal hole. The model is driven with different plasma flows in the photosphere, such as a fast up-shooting jet, as well as shearing flows generated by vortex motions or torsional oscillations. In all scenarios considered, we witness the formation of magnetic switchbacks in regions corresponding to chromospheric heights. Therefore, photospheric plasma flows around the foot-points of intense flux tubes appear to be suitable drivers for the formation of magnetic switchbacks in the lower solar atmosphere. Nevertheless, these switchbacks do not appear to be able to enter the coronal heights of the simulation in the present model. In conclusion, based on the presented simulations, switchbacks measured in the solar wind are unlikely to originate from photospheric or chromospheric dynamics.
136 - D. B. Jess 2009
We report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfven waves produced by a torsional twist of +/-22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfven oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
The C I 135.58 line is located in the wavelength range of NASAs Interface Region Imagin Spectrograph (IRIS) small explorer mission. We here study the formation and diagnostic potential of this line by means of non local-thermodynamic-equilibrium modeling, employing both 1D and 3D radiation-magnetohydrodynamic models. The C I/C II ionization balance is strongly influenced by photoionization by Ly-alpha emission. The emission in the C I 135.58 line is dominated by a recombination cascade and the line forming region is optically thick. The Doppler shift of the line correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.5 Mm height. With IRIS the C I 135.58 line is usually observed together with the O I 135.56 line, and from the Doppler shift of both lines, we obtain the velocity difference between the line forming regions of the two lines. From the ratio of the C I/O I line core intensity, we can determine the distance between the C I and the O I forming layers. Combined with the velocity difference, the velocity gradient at mid-chromospheric heights can be derived. The C I/O I total intensity line ratio is correlated with the inverse of the electron density in the mid-chromosphere. We conclude that the C I 135.58 line is an excellent probe of the middle chromosphere by itself, and together with the O I 135.56 line the two lines provide even more information, which complements other powerful chromospheric diagnostics of IRIS such as the Mg II h and k lines and the C II lines around 133.5 nm.
The magnetic and convective nature of the Suns photosphere provides a unique platform from which generated waves can be modelled, observed, and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures, and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high performance computing facilities.
Solar explosive events are commonly explained as small scale magnetic reconnection events, although unambiguous confirmation of this scenario remains elusive due to the lack of spatial resolution and of the statistical analysis of large enough samples of this type of events. In this work, we propose a sound statistical treatment of data cubes consisting of a temporal sequence of long slit spectra of the solar atmosphere. The analysis comprises all the stages from the explosive event detection to its characterization and the subsequent sample study. We have designed two complementary approaches based on the combination of standard statistical techniques (Robust Principal Component Analysis in one approach and wavelet decomposition and Independent Component Analysis in the second) in order to obtain least biased samples. These techniques are implemented in the spirit of letting the data speak for themselves. The analysis is carried out for two spectral lines: the C IV line at 1548.2 angstroms and the Ne VIII line at 770.4 angstroms. We find significant differences between the characteristics of the line profiles emitted in the proximities of two active regions, and in the quiet Sun, most visible in the relative importance of a separate population of red shifted profiles. We also find a higher frequency of explosive events near the active regions, and in the C IV line. The distribution of the explosive events characteristics is interpreted in the light of recent numerical simulations. Finally, we point out several regions of the parameter space where the reconnection model has to be refined in order to explain the observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا