Do you want to publish a course? Click here

Dense gas and the nature of the outflows

109   0   0.0 ( 0 )
 Added by Inma Sepulveda
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the observations of the (J,K)=(1,1) and the (J,K)=(2,2) inversion transitions of the NH3 molecule toward a large sample of 40 regions with molecular or optical outflows, using the 37 m radio telescope of the Haystack Observatory. We detected NH3 emission in 27 of the observed regions, which we mapped in 25 of them. Additionally, we searched for the 6{16}-5{23} H2O maser line toward six regions, detecting H2O maser emission in two of them, HH265 and AFGL 5173. We estimate the physical parameters of the regions mapped in NH3 and analyze for each particular region the distribution of high density gas and its relationship with the presence of young stellar objects. From the global analysis of our data we find that in general the highest values of the line width are obtained for the regions with the highest values of mass and kinetic temperature. We also found a correlation between the nonthermal line width and the bolometric luminosity of the sources, and between the mass of the core and the bolometric luminosity. We confirm with a larger sample of regions the conclusion of Anglada et al. (1997) that the NH3 line emission is more intense toward molecular outflow sources than toward sources with optical outflow, suggesting a possible evolutionary scheme in which young stellar objects associated with molecular outflows progressively lose their neighboring high-density gas, weakening both the NH3 emission and the molecular outflow in the process, and making optical jets more easily detectable as the total amount of gas decreases.



rate research

Read More

Observations of dense molecular gas lie at the basis of our understanding of the density and temperature structure of protostellar envelopes and molecular outflows. We aim to characterize the properties of the protostellar envelope, molecular outflow and surrounding cloud, through observations of high excitation molecular lines within a sample of 16 southern sources presumed to be embedded YSOs. Observations of submillimeter lines of CO, HCO+ and their isotopologues, both single spectra and small maps were taken with the FLASH and APEX-2a instruments mounted on APEX to trace the gas around the sources. The HARP-B instrument on the JCMT was used to map IRAS 15398-3359 in these lines. HCO+ mapping probes the presence of dense centrally condensed gas, a characteristic of protostellar envelopes. The rare isotopologues C18O and H13CO+ are also included to determine the optical depth, column density, and source velocity. The combination of multiple CO transitions, such as 3-2, 4-3 and 7-6, allows to constrain outflow properties, in particular the temperature. Archival submillimeter continuum data are used to determine envelope masses. Eleven of the sixteen sources have associated warm and/or dense quiescent as characteristic of protostellar envelopes, or an associated outflow. Using the strength and degree of concentration of the HCO+ 4-3 and CO 4-3 lines as a diagnostic, five sources classified as Class I based on their spectral energy distributions are found not to be embedded YSOs. The C18O 3-2 lines show that for none of the sources, foreground cloud layers are present. Strong molecular outflows are found around six sources, .. (continued in paper)
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AGB outflow chemical kinetics model, including both dust-gas interactions and grain-surface chemistry. The dust is assumed to have formed in the inner region, and follows an interstellar-like dust-size distribution. Using radiative transfer modelling, we obtain dust temperature profiles for different dust types in an O-rich and a C-rich outflow. We calculate a grid of models, sampling different outflow densities, drift velocities between the dust and gas, and dust types. Dust-gas chemistry can significantly affect the gas-phase composition, depleting parent and daughter species and increasing the abundance of certain daughter species via grain-surface formation followed by desorption/sputtering. Its influence depends on four factors: outflow density, dust temperature, initial composition, and drift velocity. The largest effects are for higher density outflows with cold dust and O-rich parent species, as these species generally have a larger binding energy. At drift velocities larger than $sim 10$ km s$^{-1}$, ice mantles undergo sputtering; however, they are not fully destroyed. Models with dust-gas chemistry can better reproduce the observed depletion of species in O-rich outflows. When including colder dust in the C-rich outflows and adjusting the binding energy of CS, the depletion in C-rich outflows is also better reproduced. To best interpret high-resolution molecular line observations from AGB outflows, dust-gas interactions are needed in chemical kinetics models.
To explain the properties of dust in the interstellar medium (ISM), the presence of a refractory organic mantle is necessary. The outflows of AGB stars are among the main contributors of stellar dust to the ISM. We present the first study of the refractory organic contribution of AGB stars to the ISM. Based on laboratory experiments, we included a new reaction in our extended chemical kinetics model: the photoprocessing of volatile complex ices into inert refractory organic material. The refractory organic feedback of AGB outflows to the ISM is estimated using observationally motivated parent species and grids of models of C-rich and O-rich outflows. Refractory organic material is mainly inherited from the gas phase through accretion onto the dust and subsequent photoprocessing. Grain-surface chemistry, initiated by photodissociation of ices, produces only a minor part and takes place in a sub-monolayer regime in almost all outflows. The formation of refractory organic material increases with outflow density and depends on the initial gas-phase composition. While O-rich dust is negligibly covered by refractory organics, C-rich dust has an average coverage of $3-9%$, but can be as high as $8-22%$. Although C-rich dust does not enter the ISM bare, its average coverage is too low to influence its evolution in the ISM or significantly contribute to the coverage of interstellar dust. This study opens up questions on the coverage of other dust-producing environments. It highlights the need for an improved understanding of dust formation and for models specific to density structures within the outflow.
Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blue shifted because the redshifted outflows pass into the optically thick Photon Dominated Region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD data base.
121 - W. F. Thi 2013
Circumstellar disc evolution is paramount for the understanding of planet formation. The GASPS program aims at determining the circumstellar gas and solid mass around ~250 pre-main-sequence Herbig Ae and TTauri stars. We aim to understand the origin and nature of the circumstellar matter orbiting 51 Oph, a young (<1 Myr) luminous B9.5 star. We obtained continuum and line observations with the PACS instrument on board the Herschel Space Observatory and continuum data at 1.2 mm with the IRAM 30m telescope. The SED and line fluxes were modelled using the physico-chemo radiative transfer code ProDiMo. We detected a strong emission by OI at 63 microns using the Herschel Space Observatory. The [OI] emission at 145 microns, the [CII] emission at 158 microns, the high-J CO emissions, and the warm water emissions were not detected. Continuum emission was detected at 1.2 mm. The continuum from the near- to the far-infrared and the [OI] emission are well explained by the emission from a compact hydrostatic disc model with a gas mass of 5E-6 MSun, 100 times that of the solid mass. However, this model fails to match the continuum millimeter flux, which hints at a cold outer disc with a mass in solids of 1E-6 MSun or free-free emission from a photoevaporative disc wind. This outer disc can either be devoid of gas and/or is to cold to emit in the [OI] line. A very flat extended disc model (Rout=400 AU) with a fixed vertical structure and dust settling matches all photometric points and most of the [O I] flux. The observations can be explained by an extended flat disc where dust grains have settled. However, a flat gas disc cannot be reproduced by hydrostatic disc models. The low mass of the 51 Oph inner disc in gas and dust may be explained either by the fast dissipation of an initial massive disc or by a very small initial disc mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا