Do you want to publish a course? Click here

Time-resolved spectroscopy of exciton states in single crystals, single crystalline films and powders of YAlO_3 and YAlO_3:Ce

269   0   0.0 ( 0 )
 Added by Valentin Laguta
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Luminescence characteristics of single crystals (SC), single crystalline films (SCF), powders and ceramics of YAlO_3 and YAlO_3:Ce have been studied at 4.2-300 K under photoexcitation in the 4-20 eV energy range and X-ray excitation. The origin and structure of defects responsible for various exciton-related emission and excitation bands have been identified. The ~5.6 eV emission of YAlO_3 SCF is ascribed to the self-trapped excitons. In YAlO_3 SC, the dominating 5.63 eV and 4.12 eV emissions are ascribed to the excitons localized at the isolated antisite defect Y^{3+}_Al and at the Y^{3+}_{Al} defect associated with the nearest-neighbouring oxygen vacancy, respectively. Thermally stimulated release of electrons, trapped at these defects, takes place at 200 K and 280 K, respectively. The formation energies of various Y^{3+}_{Al}-related defects are calculated. The presence of Y_{Al} antisite-related defects is confirmed by NMR measurements. The influence of various intrinsic and impurity defects on the luminescence characteristics of Ce^{3+} centers is clarified.



rate research

Read More

The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states. We show from DFT computations that (001) and (110) free surfaces have comparable energies, and, correspondingly, we experimentally observe that single micro-crystals exhibit both facet orientations. These surfaces are found to relax over typically the length of one oxygen octahedron, defining a structural critical thickness for thin films. A reconstruction of the electronic density associated to tilts of the oxygen octahedra is observed. On the other hand, thin films have invariably been reported to grow along the (110) direction. We show that the interfacial energy associated to the oxygen octahedra distortion for epitaxy is likely at the origin of this specific feature, and propose leads to induce (001) SrIrO3 growth.
Time- and angle-resolved photoemission spectroscopy is a powerful probe of electronic band structures out of equilibrium. Tuning time and energy resolution to suit a particular scientific question has become an increasingly important experimental consideration. Many instruments use cascaded frequency doubling in nonlinear crystals to generate the required ultraviolet probe pulses. We demonstrate how calculations clarify the relationship between laser bandwidth and nonlinear crystal thickness contributing to experimental resolutions and place intrinsic limits on the achievable time-bandwidth product. Experimentally, we tune time and energy resolution by varying the thickness of nonlinear $beta$-BaB$_2$O$_4$ crystals for frequency up-conversion, providing for a flexible experiment design. We achieve time resolutions of 58 to 103 fs and corresponding energy resolutions of 55 to 27 meV.
352 - P. Sati , C. Deparis , C. Morhain 2007
In a rather contradictory situation regarding magnetic data on Co-doped ZnO, we have succeeded in fabricating high-quality single crystalline Zn1-xCoxO (x=0.003-0.07) thin films. This gives us the possibility, for the first time, to examine the it intrinsic magnetic properties of ZnO:Co at a quantitative level and therefore to address several unsolved problems, the major one being the nature of the Co-Co interaction in the ZnO structure.
In most topological insulators, the valence and conduction band appear in reverse or inverted order compared to an equivalent insulator with isolated atoms. Here, we explore a different route towards topologically nontrivial states that may arise from metallic states present on the surface of bulk insulators without such band inversion. High-quality single crystals of HfNiSn show surface transport with weak anti-localization, consistent with a two-dimensional metallic state in the presence of strong spin-orbit coupling. Nonlinear I(V) curves indicate electronic correlations related to a chiral, nonlocal transport component that is qualitatively similar to a quantum Hall edge state, yet in the absence of external magnetic fields. The correlations themselves may play a decisive role in creating an apparent topologically nontrivial state on the HfNiSn surface.
Single crystals of (Nd1-xCex)2Fe14B are grown out of Fe-(Nd,Ce) flux. Chemical and structural analysis of the crystals indicates that (Nd1-xCex)2Fe14B forms a solid solution until at least x = 0.38 with a Vegard-like variation of the lattice constants with x. Refinements of single crystal neutron diffraction data indicate that Ce has a slight site preference (7:3) for the 4g rare earth site over the 4f site. Magnetization measurements show that for x = 0.38 the saturation magnetization at 400 K, a temperature important to applications, falls from 29.8 for the parent Nd2Fe14B to 27.6 (mu)B/f.u., the anisotropy field decreases from 5.5 T to 4.7 T, and the Curie temperature decreases from 586 to 543 K. First principles calculations carried out within density functional theory are used to explain the decrease in magnetic properties due to Ce substitution. Though the presence of the lower-cost and more abundant Ce slightly affects these important magnetic characteristics, this decrease is not large enough to affect a multitude of applications. Ce-substituted Nd2Fe14B is therefore a potential high-performance permanent magnet material with substantially reduced Nd content.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا