Do you want to publish a course? Click here

Towards electron transport measurements in chemically modified graphene: The effect of a solvent

116   0   0.0 ( 0 )
 Added by Arnhild Jacobsen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence.



rate research

Read More

The mechanical, electrical and chemical properties of chemically modified graphene (CMG) are intrinsically linked to its structure. Here we report on our study of the topographic structure of free-standing CMG using atomic force microscopy and electron diffraction. We find that, unlike graphene, suspended sheets of CMG are corrugated and distorted on nanometre length scales. AFM reveals not only long range (100 nm) distortions induced by the support, as previously observed for graphene, but also short-range corrugations with length scales down to the resolution limit of 10 nm. These corrugations are static not dynamic, and are significantly diminished on CMG supported on atomically smooth substrates. Evidence for even shorter range distortions, down to a few nanometres or less, is found by electron diffraction of suspended CMG. Comparison of the experimental data with simulations reveals that the mean atomic displacement from the nominal lattice position is of order 10% of the carbon-carbon bond length. Taken together, these results suggest a complex structure for chemically modified graphene where heterogeneous functionalisation creates local strain and distortion.
Designing platforms to control phase-coherence and interference of electron waves is a cornerstone for future quantum electronics, computing or sensing. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly [Moreno et al., Science 360, 199 (2018)] opening an avenue for controlling the electronic current in a two-dimensional material. By simulating electron transport in real-sized NPG samples we predict that electron waves injected from the tip of a scanning tunneling microscope (STM) behave similarly to photons in coupled waveguides, displaying a Talbot interference pattern. We link the origins of this effect to the band structure of the NPG and further demonstrate how this pattern may be mapped out by a second STM probe. We enable atomistic parameter-free calculations beyond the 100 nm scale by developing a new multi-scale method where first-principles density functional theory regions are seamlessly embedded into a large-scale tight-binding.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resistivity $rho_c simeq 19 kOmega mu m^2$ and carrier mobility as high as 4000 cm$^2$V$^{-1}$s$^{-1}$. By using a highly doped p-Si/SiO$_2$ substrate as back gate, we analyze the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate that low energy irradiation is detrimental on the transistor current capability, resulting in an increase of the contact resistance and a reduction of the carrier mobility even at electron doses as low as 30 $e^-/nm^2$. We also show that the irradiated devices recover by returning to their pristine state after few repeated electrical measurements.
We report an electron transport study of lithographically fabricated graphene nanoribbons of various widths and lengths at different temperatures. At the charge neutrality point, a length-independent transport gap forms whose size is inversely proportional to the width. In this gap, electron is localized, and charge transport exhibits a transition between simple thermally activated behavior at higher temperatures and a variable range hopping at lower temperatures. By varying the geometric capacitance through the addition of top gates, we find that charging effects constitute a significant portion of the activation energy.
We theoretically study the inelastic scattering rate and the carrier mean free path for energetic hot electrons in graphene, including both electron-electron and electron-phonon interactions. Taking account of optical phonon emission and electron-electron scattering, we find that the inelastic scattering time $tau sim 10^{-2}-10^{-1} mathrm{ps}$ and the mean free path $l sim 10-10^2 mathrm{nm}$ for electron densities $n = 10^{12}-10^{13} mathrm{cm}^{-2}$. In particular, we find that the mean free path exhibits a finite jump at the phonon energy $200 mathrm{meV}$ due to electron-phonon interaction. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا