Do you want to publish a course? Click here

Analyzing X-ray pulsar profiles: geometry and beam pattern of A 0535+26

274   0   0.0 ( 0 )
 Added by Isabel Caballero
 Publication date 2010
  fields Physics
and research's language is English
 Authors I. Caballero




Ask ChatGPT about the research

We applied a decomposition method to the energy dependent pulse profiles of the accreting binary pulsar A 0535+26, in order to identify the contribution of the two magnetic poles of the neutron star and to obtain constraints on the geometry of the system and on the beam pattern. We analyzed pulse profiles obtained from RXTE observations in the X-ray regime. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles and that the emission regions have axisymmetric beam patterns. Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. We interpreted the reconstructed beam pattern in terms of a geometrical model of a hollow column plus a halo of scattered radiation on the neutron star surface, which includes relativistic light deflection.



rate research

Read More

We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A,0535+26 with the textit{Fermi}/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of the rich historical data (since $sim$1978) and discussed in terms of the neutron star Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray QPO was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25,keV. In the long-term a strong optical/X-ray correlation was found for this system, however in the medium-term the H$_alpha$ EW and the V-band brightness showed an anti-correlation after $sim$2002 Agust. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the H$_alpha$ showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the H$_alpha$ line. These had a period of $sim$,25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning $sim$,6 months following a giant outburst.
We compiled X-ray and Optical observations of the accreting X-ray binary system A 0535+262 since its discovery in 1975, that will allow us to shed light on the unpredictable behavior of this binary system. We present the data in terms of the Be-disk interaction with the neutron star companion. In addition, we show recent results from the continuous monitoring of this source by the Gamma-ray Burst Monitor(GBM), on board the Fermi observatory, since its launch in 2008 June 11.
Giant X-ray outbursts, with luminosities of about $ 10^{37}$ erg s$^{-1}$, are observed roughly every 5 years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very-high energies (VHE; E$>$100 GeV) triggered by the X-ray outburst in December 2009. The observations started shortly after the onset of the outburst, and they provided comprehensive coverage of the episode, as well as the 111-day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/LAT at high energy photons (HE; E$>$0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/XRT and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A~0535+262 from those Be X-ray binaries (such as PSR B1259--63 and LS I +61$^{circ}$303) that have been detected at GeV--TeV energies. We discuss the implications of the results on theoretical models.
94 - I. Caballero 2010
A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occured around the periastron passage of the source, but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first flare (lasting about 9 days from MJD 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL, RXTE and Suzaku. First results of these observations are presented, with special emphasis on the cyclotron lines present in the X-ray spectrum of the source, as well as in the pulse period and energy dependent pulse profiles of the source.
The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in August 2009. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual by presenting a double-peaked light curve. The two peaks reached a flux of ~450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا