Do you want to publish a course? Click here

A double-peaked outburst of A 0535+26 observed with INTEGRAL, RXTE, and Suzaku

119   0   0.0 ( 0 )
 Added by Isabel Caballero
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in August 2009. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual by presenting a double-peaked light curve. The two peaks reached a flux of ~450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.



rate research

Read More

111 - I. Caballero 2010
A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occured around the periastron passage of the source, but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first flare (lasting about 9 days from MJD 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL, RXTE and Suzaku. First results of these observations are presented, with special emphasis on the cyclotron lines present in the X-ray spectrum of the source, as well as in the pulse period and energy dependent pulse profiles of the source.
We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A,0535+26 with the textit{Fermi}/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of the rich historical data (since $sim$1978) and discussed in terms of the neutron star Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray QPO was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25,keV. In the long-term a strong optical/X-ray correlation was found for this system, however in the medium-term the H$_alpha$ EW and the V-band brightness showed an anti-correlation after $sim$2002 Agust. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the H$_alpha$ showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the H$_alpha$ line. These had a period of $sim$,25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning $sim$,6 months following a giant outburst.
We compiled X-ray and Optical observations of the accreting X-ray binary system A 0535+262 since its discovery in 1975, that will allow us to shed light on the unpredictable behavior of this binary system. We present the data in terms of the Be-disk interaction with the neutron star companion. In addition, we show recent results from the continuous monitoring of this source by the Gamma-ray Burst Monitor(GBM), on board the Fermi observatory, since its launch in 2008 June 11.
We present an analysis of X-ray spectra of the high mass X-ray binary 4U 0115+634 as observed with Suzaku and RXTE in 2011 July, during the fading phase of a giant X-ray outburst. We used a continuum model consisting of an absorbed cutoff power-law and an ad-hoc Gaussian emission feature centered around 8.5 keV, which we discuss to be due to cyclotron emission. Our results are consistent with a fundamental cyclotron absorption line centered at ${sim}10.2$ keV for all observed flux ranges. At the same time we rule out significant influence of the 8.5 kev Gaussian on the CRSF parameters, which are not consistent with the cyclotron line energies and depths of previously reported flux-dependent descriptions. We also show that some continuum models can lead to artificial line-like residuals in the analyzed spectra, which are then misinterpreted as unphysically strong cyclotron lines. Specifically, our results do not support the existence of a previously claimed additional cyclotron feature at ${sim}15$ keV. Apart from these features, we find for the first time evidence for a He-like Fe XXV emission line at ${sim}6.7$ keV and weak H-like Fe XXVI emission close to ${sim}7.0$ keV.
547 - Motoki Nakajima 2013
Over the 3-year active period from 2008 September to 2011 November, the outburst behavior of the Be/X-ray binary A 0535+26 was continuously monitored with the MAXI/GSC and the Swift/BAT. The source exhibited nine outbursts, every binary revolution of 111.1 days, of which two are categorized into the giant (type-II) outbursts. The recurrence period of these outbursts is found to be $sim115$ days, significantly longer than the orbital period of 111.1 days. With the MAXI/GSC, a low-level active period, or a precursor, was detected prior to at least four giant outbursts. The precursor recurrence period agrees with that of the giant outbursts. The period difference of the giant outbursts from the orbital period is possibly related with some structures in the circumstellar disc formed around the Be companion. Two scenarios, one based on a one-armed disc structure and the other a Be-disc precession, are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا