No Arabic abstract
The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large N_c) maximally supersymmetric Yang-Mills theory in D = 5, which occurs at six loops. We show that the coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an approximate exponential formula based on the coefficients of the divergences through five loops. This formula predicts the approximate values of the ultraviolet divergence at loop orders L > 6 in the critical dimension D = 4 + 6/L. To obtain the six-loop divergence we first construct the planar six-loop four-point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of vacuum integrals, which are obtained by expanding the integrand in the external momenta. The vacuum integrals are integrated via sector decomposition, using a modified version of the FIESTA program.
We present an ansatz for the planar five-loop four-point amplitude in maximally supersymmetric Yang-Mills theory in terms of loop integrals. This ansatz exploits the recently observed correspondence between integrals with simple conformal properties and those found in the four-point amplitudes of the theory through four loops. We explain how to identify all such integrals systematically. We make use of generalized unitarity in both four and D dimensions to determine the coefficients of each of these integrals in the amplitude. Maximal cuts, in which we cut all propagators of a given integral, are an especially effective means for determining these coefficients. The set of integrals and coefficients determined here will be useful for computing the five-loop cusp anomalous dimension of the theory which is of interest for non-trivial checks of the AdS/CFT duality conjecture. It will also be useful for checking a conjecture that the amplitudes have an iterative structure allowing for their all-loop resummation, whose link to a recent string-side computation by Alday and Maldacena opens a new venue for quantitative AdS/CFT comparisons.
We give a representation of the parity-even part of the planar two-loop six-gluon MHV amplitude of N=4 super-Yang-Mills theory, in terms of loop-momentum integrals with simple dual conformal properties. We evaluate the integrals numerically in order to test directly the ABDK/BDS all-loop ansatz for planar MHV amplitudes. We find that the ansatz requires an additive remainder function, in accord with previous indications from strong-coupling and Regge limits. The planar six-gluon amplitude can also be compared with the hexagonal Wilson loop computed by Drummond, Henn, Korchemsky and Sokatchev in arXiv:0803.1466 [hep-th]. After accounting for differing singularities and other constants independent of the kinematics, we find that the Wilson loop and MHV-amplitude remainders are identical, to within our numerical precision. This result provides non-trivial confirmation of a proposed n-point equivalence between Wilson loops and planar MHV amplitudes, and suggests that an additional mechanism besides dual conformal symmetry fixes their form at six points and beyond.
The collinear factorization properties of two-loop scattering amplitudes in dimensionally-regulated N=4 super-Yang-Mills theory suggest that, in the planar (t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the AdS/CFT correspondence that the form of the large N_c L-loop amplitudes should be simple enough to allow a resummation to all orders.
The $alpha^2$ deformation of D=10 SYM is the natural generalisation of the $F^4$ term in the abelian Born-Infeld theory. It is shown that this deformation can be extended to $alpha^4$ in a way which is consistent with supersymmetry. The latter requires the presence of higher-derivative and commutator terms as well as the symmetrised trace of the Born-Infeld $alpha^4$ term.
We construct an exact analytical solution to the integral equation which is believed to describe logarithmic growth of the anomalous dimensions of high spin operators in planar N=4 super Yang-Mills theory and use it to determine the strong coupling expansion of the cusp anomalous dimension.