Do you want to publish a course? Click here

Quest for Order in Chaos: Hidden Repulsive Level Statistics in Disordered Quantum Nanoaggregates

249   0   0.0 ( 0 )
 Added by Victor Malyshev
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The local distribution of exciton levels in disordered cyanine-dye-based molecular nano-aggregates has been elucidated using fluorescence line narrowing spectroscopy. The observation of a Wigner-Dyson-type level spacing distribution provides direct evidence of the existence of level repulsion of strongly overlapping states in the molecular wires, which is important for the understanding of the level statistics, and therefore the `functional properties, of a large variety of nano-confined systems.



rate research

Read More

95 - L. Cao , J. M. Schwarz 2012
Quantum $k$-core percolation is the study of quantum transport on $k$-core percolation clusters where each occupied bond must have at least $k$ occupied neighboring bonds. As the bond occupation probability, $p$, is increased from zero to unity, the system undergoes a transition from an insulating phase to a metallic phase. When the lengthscale for the disorder, $l_d$, is much greater than the coherence length, $l_c$, earlier analytical calculations of quantum conduction on the Bethe lattice demonstrate that for $k=3$ the metal-insulator transition (MIT) is discontinuous, suggesting a new universality class of disorder-driven quantum MITs. Here, we numerically compute the level spacing distribution as a function of bond occupation probability $p$ and system size on a Bethe-like lattice. The level spacing analysis suggests that for $k=0$, $p_q$, the quantum percolation critical probability, is greater than $p_c$, the geometrical percolation critical probability, and the transition is continuous. In contrast, for $k=3$, $p_q=p_c$ and the transition is discontinuous such that these numerical findings are consistent with our previous work to reiterate a new universality class of disorder-driven quantum MITs.
Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramms left passage formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by Stochastic-Loewner-Evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and fourth derivative at zero energy) with the kernel polynomial method (KPM) we systematically tune the effective length scale that eventually rounds out the transition and leads to an AQCP. We show how to determine the strength of the avoidance, establishing that it is not controlled by the long wavelength component of the disorder. Instead, the amount of avoidance can be adjusted via the tails of the probability distribution of the local random potentials. A binary distribution with no tails produces much less avoidance than a Gaussian distribution. We introduce a double Gaussian distribution to interpolate between these two limits. As a result we are able to make the length scale of the avoidance sufficiently large so that we can accurately study the properties of the underlying transition (that is eventually rounded out), unambiguously identify its location, and provide accurate estimates of the critical exponents $ u=1.01pm0.06$ and $z=1.50pm0.04$. We also show that the KPM expansion order introduces an effective length scale that can also round out the transition in the scaling regime near the AQCP.
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme. With the method developed here we confirm the value of the roughness exponent $zeta approx 0.2083 epsilon$ in order $epsilon$. Going beyond previous work, we demonstrate that this exponent is universal. In addition, we analyze the generation of higher cumulants in the disorder distribution and the role of temperature as a dangerously irrelevant variable.
We explore numerically, analytically, and experimentally the relationship between quasi-normal modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-dimensional (1D) and quasi-1D open disordered systems. It is shown that for weak disorder there exist two types of the eigenstates: ordinary QNMs which are associated with a TR, and hidden QNMs which do not exhibit peaks in transmission or within the sample. The distinctive feature of the hidden modes is that unlike ordinary ones, their lifetimes remain constant in a wide range of the strength of disorder. In this range, the averaged ratio of the number of transmission peaks $N_{rm res}$ to the number of QNMs $N_{rm mod}$, $N_{rm res}/N_{rm mod}$, is insensitive to the type and degree of disorder and is close to the value $sqrt{2/5}$, which we derive analytically in the weak-scattering approximation. The physical nature of the hidden modes is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden QNMs and the segregation of superradiant states and trapped modes is discussed. When the coupling to the environment is tuned by an external edge reflectors, the superradiace transition is reproduced. Hidden modes have been also found in microwave measurements in quasi-1D open disordered samples. The microwave measurements and modal analysis of transmission in the crossover to localization in quasi-1D systems give a ratio of $N_{rm res}/N_{rm mod}$ close to $sqrt{2/5}$. In diffusive quasi-1D samples, however, $N_{rm res}/N_{rm mod}$ falls as the effective number of transmission eigenchannels $M$ increases. Once $N_{rm mod}$ is divided by $M$, however, the ratio $N_{rm res}/N_{rm mod}$ is close to the ratio found in 1D.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا