Do you want to publish a course? Click here

Domain walls and chaos in the disordered SOS model

117   0   0.0 ( 0 )
 Added by Heiko Rieger
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramms left passage formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by Stochastic-Loewner-Evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.



rate research

Read More

Domain-wall free-energy $delta F$, entropy $delta S$, and the correlation function, $C_{rm temp}$, of $delta F$ are measured independently in the four-dimensional $pm J$ Edwards-Anderson (EA) Ising spin glass. The stiffness exponent $theta$, the fractal dimension of domain walls $d_{rm s}$ and the chaos exponent $zeta$ are extracted from the finite-size scaling analysis of $delta F$, $delta S$ and $C_{rm temp}$ respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation $zeta=d_{rm s}/2-theta$ derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.
74 - Shriya Pai , N. S. Srivatsa , 2020
The Haldane-Shastry model is one of the most studied interacting spin systems. The Yangian symmetry makes it exactly solvable, and the model has semionic excitations. We introduce disorder into the Haldane-Shastry model by allowing the spins to sit at random positions on the unit circle and study the properties of the eigenstates. At weak disorder, the spectrum is similar to the spectrum of the clean Haldane-Shastry model. At strong disorder, the long-range interactions in the model do not decay as a simple power law. The eigenstates in the middle of the spectrum follow a volume law, but the coefficient is small, and the entropy is hence much less than for an ergodic system. In addition, the energy level spacing statistics is neither Poissonian nor of the Wigner-Dyson type. The behavior at strong disorder hence serves as an example of a non-ergodic phase, which is not of the many-body localized kind, in a model with long-range interactions and SU(2) symmetry.
We discuss fluctuation-induced forces in a system described by a continuous Landau-Ginzburg model with a quenched disorder field, defined in a $d$-dimensional slab geometry $mathbb R^{d-1}times[0,L]$. A series representation for the quenched free energy in terms of the moments of the partition function is presented. In each moment an order parameter-like quantity can be defined, with a particular correlation length of the fluctuations. For some specific strength of the non-thermal control parameter, it appears a moment of the partition function where the fluctuations associated to the order parameter-like quantity becomes long-ranged. In this situation, these fluctuations become sensitive to the boundaries. In the Gaussian approximation, using the spectral zeta-function method, we evaluate a functional determinant for each moment of the partition function. The analytic structure of each spectral zeta-function depending on the dimension of the space for the case of Dirichlet, Neumann Laplacian and also periodic boundary conditions is discussed in a unified way. Considering the moment of the partition function with the largest correlation length of the fluctuations, we evaluate the induced force between the boundaries, for Dirichlet boundary conditions. We prove that the sign of the fluctuation-induced force for this case depend in a non-trivial way on the strength of the non-thermal control parameter.
The creep motion of domain walls driven by external fields in magnetic thin films is described by universal features related to the underlying depinning transition. One key parameter in this description is the roughness exponent characterizing the growth of fluctuations of the domain wall position with its longitudinal length scale. The roughness amplitude, which gives information about the scale of fluctuations, however, has received less attention. Albeit their relevance, experimental reports of the roughness parameters, both exponent and amplitude, are scarce. We report here experimental values of the roughness parameters for different magnetic field intensities in the creep regime at room temperature for a Pt/Co/Pt thin film. The mean value of the roughness exponent is $zeta = 0.74$, and we show that it can be rationalized as an effective value in terms of the known universal values corresponding to the depinning and thermal cases. In addition, it is shown that the roughness amplitude presents a significant increase with decreasing field. These results contribute to the description of domain wall motion in disordered thin magnetic systems.
We study the low temperature out of equilibrium Monte Carlo dynamics of the disordered Ising $p$-spin Model with $p=3$ and a small number of spin variables. We focus on sequences of configurations that are stable against single spin flips obtained by instantaneous gradient descent from persistent ones. We analyze the statistics of energy gaps, energy barriers and trapping times on sub-sequences such that the overlap between consecutive configurations does not overcome a threshold. We compare our results to the predictions of various trap models finding the best agreement with the step model when the $p$-spin configurations are constrained to be uncorrelated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا