We present an algorithm to automatically derive Feynman rules for lattice perturbation theory in background field gauge. Vertices with an arbitrary number of both background and quantum legs can be derived automatically from both gluonic and fermionic actions. The algorithm is a generalisation of our earlier algorithm based on prior work by Luscher and Weisz. We also present techniques allowing for the parallelisation of the evaluation of the often rather complex lattice Feynman rules that should allow for efficient implementation on GPUs, but also give a significant speed-up when calculating the derivatives of Feynman diagrams with respect to external momenta.
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatial distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice Yang-Mills theories using the indirect (so-called HAL QCD) method. We use the cluster decomposition error reduction technique to improve the statistical accuracy of the glueball correlators. After calculating the glueball scattering cross section in SU(2) Yang-Mills theory and combining with the observational data of the dark matter mass distributions, we derive the lower limit on the scale parameter.
We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmic parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and $ato 0$ limits. We find accurate coincidence with the one-loop result for the ghost self-energy known from standard Lattice Perturbation Theory and improve our previous estimate for the two-loop constant contribution to the ghost self-energy in Landau gauge. Our results for the perturbative ghost propagator are compared with Monte Carlo measurements of the ghost propagator performed by the Berlin Humboldt university group which has used the exponential relation between potentials and gauge links.
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived from the Wilson action. The one-loop result for the gluon propagator is compared to the infinite volume limit of standard lattice perturbation theory.