Do you want to publish a course? Click here

Interglueball potential in SU(N) lattice gauge theory

89   0   0.0 ( 0 )
 Added by Nodoka Yamanaka
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice Yang-Mills theories using the indirect (so-called HAL QCD) method. We use the cluster decomposition error reduction technique to improve the statistical accuracy of the glueball correlators. After calculating the glueball scattering cross section in SU(2) Yang-Mills theory and combining with the observational data of the dark matter mass distributions, we derive the lower limit on the scale parameter.



rate research

Read More

We compute chromoelectric and chromomagnetic flux densities for hybrid static potentials in SU(2) and SU(3) lattice gauge theory. In addition to the ordinary static potential with quantum numbers $Lambda_eta^epsilon = Sigma_g^+$, we present numerical results for seven hybrid static potentials corresponding to $Lambda_eta^{(epsilon)} = Sigma_u^+, Sigma_g^-, Sigma_u^-, Pi_g, Pi_u, Delta_g, Delta_u$, where the flux densities of five of them are studied for the first time in this work. We observe hybrid static potential flux tubes, which are significantly different from that of the ordinary static potential. They are reminiscent of vibrating strings, with localized peaks in the flux densities that can be interpreted as valence gluons.
70 - Yamaguchi Azusa 1998
An Algorithm is proposed for the simulation of pure SU(N) lattice gauge theories based on Genetic Algorithms(GAs). Main difference between GAs and Metropolis methods(MPs) is that GAs treat a population of points at once, while MPs treat only one point in the searching space. This provides GAs with information about the assortment as well as the fitness of the evolution function and producting a better solution. We apply GAs to SU(2) pure gauge theory on a 2 dimensional lattice and show the results are consistent with those given by MP and Heatbath methods(HBs). Thermalization speed of GAs is especially faster than the simple MPs.
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effects are hardly visible in the effective Coulomb potential, scaling violations and a strong dependence on the choice of Gribov copy are observed. We obtain bounds for the Coulomb string tension that are in agreement with Zwanzigers inequality relating the Coulomb string tension to the Wilson string tension.
Using a standard cooling method for SU(3) lattice gauge fields constant Abelian magnetic field configurations are extracted after dyon-antidyon constituents forming metastable Q=0 configurations have annihilated. These so-called Dirac sheets, standard and non-standard ones, corresponding to the two U(1) subgroups of the SU(3) group, have been found to be stable if emerging from the confined phase, close to the deconfinement phase transition, with sufficiently nontrivial Polyakov loop values. On a finite lattice we find a nice agreement of the numerical observations with the analytic predictions concerning the stability of Dirac sheets depending on the value of the Polyakov loop.
Lattice gauge theory is an essential tool for strongly interacting non-Abelian fields, such as those in quantum chromodynamics where lattice results have been of central importance for several decades. Recent studies suggest that quantum computers could extend the reach of lattice gauge theory in dramatic ways, but the usefulness of quantum annealing hardware for lattice gauge theory has not yet been explored. In this work, we implement SU(2) pure gauge theory on a quantum annealer for lattices comprising a few plaquettes in a row with a periodic boundary condition. These plaquettes are in two spatial dimensions and calculations use the Hamiltonian formulation where time is not discretized. Numerical results are obtained from calculations on D-Wave Advantage hardware for eigenvalues, eigenvectors, vacuum expectation values, and time evolution. The success of this initial exploration indicates that the quantum annealer might become a useful hardware platform for some aspects of lattice gauge theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا