We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatial distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories, considering the necessary truncation imposed on the Hilbert space of gauge bosons with any finite computing resources. This paper is a first step toward addressing this question in the case of non-Abelian LGTs, which further require the imposition of non-Abelian Gausss laws on the Hilbert space, introducing additional computational complexity. Focusing on the case of SU(2) LGT in 1+1 D coupled to matter, a number of different formulations of the original Kogut-Susskind framework are analyzed with regard to the dependence of the dimension of the physical Hilbert space on boundary conditions, systems size, and the cutoff on the excitations of gauge bosons. The impact of such dependencies on the accuracy of the spectrum and dynamics is examined, and the (classical) computational-resource requirements given these considerations are studied. Besides the well-known angular-momentum formulation of the theory, the cases of purely fermionic and purely bosonic formulations (with open boundary conditions), and the Loop-String-Hadron formulation are analyzed, along with a brief discussion of a Quantum Link Model of the same theory. Clear advantages are found in working with the Loop-String-Hadron framework which implements non-Abelian Gausss laws a priori using a complete set of gauge-invariant operators. Although small lattices are studied in the numerical analysis of this work, and only the simplest algorithms are considered, a range of conclusions will be applicable to larger systems and potentially to higher dimensions.
We perform various lattice numerical analyses with the energy-momentum tensor (EMT) defined through the gradient flow. We explore the spatial distribution of the stress tensor in static quark-anti-quark systems and thermodynamic quantities at nonzero temperature, as well as the correlation functions of EMT. The stress tensor distribution is also studied in the Abelian-Higgs model, which is compared with the lattice result.
We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice Yang-Mills theories using the indirect (so-called HAL QCD) method. We use the cluster decomposition error reduction technique to improve the statistical accuracy of the glueball correlators. After calculating the glueball scattering cross section in SU(2) Yang-Mills theory and combining with the observational data of the dark matter mass distributions, we derive the lower limit on the scale parameter.
We explore a novel approach to compute the force between a static quark and a static antiquark with lattice gauge theory directly. The approach is based on expectation values of Wilson loops or Polyakov loops with chromoelectric field insertions. We discuss theoretical and technical aspects in detail, in particular, how to compensate large discretization errors with a multiplicative renormalization factor and the evaluation using a multilevel algorithm. We also compare numerical results for the static force to corresponding results obtained in the traditional way, i.e., by computing first the static potential and then taking the derivative.
We discuss the lattice formulation of the t Hooft surface, that is, the two-dimensional surface operator of a dual variable. The t Hooft surface describes the world sheets of topological vortices. We derive the formulas to calculate the expectation value of the t Hooft surface in the multiple-charge lattice Abelian Higgs model and in the lattice non-Abelian Higgs model. As the first demonstration of the formula, we compute the intervortex potential in the charge-2 lattice Abelian Higgs model.