Do you want to publish a course? Click here

Sieving hydrogen based on its high compressibility

112   0   0.0 ( 0 )
 Added by Deyan Sun
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A molecular sieve for hydrogen is presented based on a carbon nanotube intramolecular junction and a $C_{60}$. The small interspace formed between $C_{60}$ and junction provides a size changeable channel for the permselectivity of hydrogen while blocking $Ne$ and $Ar$. The sieving mechanism is due to the high compressibility of hydrogen.



rate research

Read More

Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size selective membranes because of its atomic thickness, high mechanical strength, relative inertness, and impermeability to all standard gases. However, pores that can exclude larger molecules, but allow smaller molecules to pass through have to be introduced into the material. Here we show UV-induced oxidative etching can create pores in micrometre-sized graphene membranes and the resulting membranes used as molecular sieves. A pressurized blister test and mechanical resonance is used to measure the transport of a variety of gases (H2, CO2, Ar, N2, CH4, and SF6) through the pores. The experimentally measured leak rates, separation factors, and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.
Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.
It is well established that topological insulators sustain Dirac fermion surface states as a consequence of band inversion in the bulk. These states have a helical spin polarization and a linear dispersion with large Fermi velocity. In this article we report on a set of experimental observations indicating the existence of massive surface states. These states are confined at the interface and dominate equilibrium and transport properties at high energy and/or high electric field. By monitoring the AC admittance of HgTe topological insulator field-effect capacitors, we access the compressibility and conductivity of surface states in a broad range of energy and electric fields. The Dirac surface states are characterized by a compressibility minimum, a linear energy dependence and a high mobility persisting up to energies much larger than the transport bandgap of the bulk. New features are revealed at high energies with signatures such as conductance peaks, compressibility bumps, a strong charge metastability and a Hall resistance anomaly. These features point to the existence of excited massive surface states, responsible for a strong intersubband scattering with the Dirac states and the nucleation of metastable bulk carriers. The spectrum of excited states agrees with predictions of a phenomenological model of the topological-trivial semiconductor interface. The model accounts for the finite interface depth and the effect of electric fields. The existence of excited topological states is essential for the understanding of topological phases and opens a route for engineering and exploiting topological resources in quantum technology.
We numerically investigate the interplay of disorder and electron-electron interactions in the integer quantum Hall effect. In particular, we focus on the behaviour of the electronic compressibility as a function of magnetic field and electron density. We find manifestations of non-linear screening and charging effects around integer filling factors, consistent with recent imaging experiments. Our calculations exhibit $g$-factor enhancement as well as strong overscreening in the centre of the Landau bands. Even though the critical behaviour appears mostly unaffected by interactions, important implications for the phase diagram arise. Our results are in very good agreement with the experimental findings and strongly support the relevance of electron-electron interactions for understanding integer quantum Hall physics.
We set up an evolutionary algorithm combined with density functional tight-binding (DFTB) calculations to investigate hydrogen adsorption on flat graphene and graphene monolayers curved over substrate steps. During the evolution, candidates for the new generations are created by adsorption of an additional hydrogen atom to the stable configurations of the previous generation, where a mutation mechanism is also incorporated. Afterwards a two-stage selection procedure is employed. Selected candidates act as the parents of the next generation. In curved graphene, the evolution follows a similar path except for a new mechanism, which aligns hydrogen atoms on the line of minimum curvature. The mechanism is due to the increased chemical reactivity of graphene along the minimum radius of curvature line (MRCL) and to sp$^3$ bond angles being commensurate with the kinked geometry of hydrogenated graphene at the substrate edge. As a result, the reaction barrier is reduced considerably along the MRCL, and hydrogenation continues like a mechanical chain reaction. This growth mechanism enables lines of hydrogen atoms along the MRCL, which has the potential to overcome substrate or rippling effects and could make it possible to define edges or nanoribbons without actually cutting the material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا