No Arabic abstract
Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size selective membranes because of its atomic thickness, high mechanical strength, relative inertness, and impermeability to all standard gases. However, pores that can exclude larger molecules, but allow smaller molecules to pass through have to be introduced into the material. Here we show UV-induced oxidative etching can create pores in micrometre-sized graphene membranes and the resulting membranes used as molecular sieves. A pressurized blister test and mechanical resonance is used to measure the transport of a variety of gases (H2, CO2, Ar, N2, CH4, and SF6) through the pores. The experimentally measured leak rates, separation factors, and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.
Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.
There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphene oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an ion sponge effect that results in highly concentrated salt solutions inside graphene capillaries.
Highly spin selective transport of electrons through a helically shaped electrostatic potential is demonstrated in the frame of a minimal model approach. The effect is significant even in the case of weak spin-orbit coupling. Two main factors determine the selectivity, an unconventional Rashba- like spin-orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic band of the helical system. The weak electronic coupling, associated with the small dispersion, leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions to be effective. The results are expected to be generic for chiral molecular systems displaying low spin-orbit coupling and low conductivity.
Recent air pollution issues have raised significant attention to develop efficient air filters, and one of the most promising candidates is that enabled by nanofibers. We explore here selective molecular capture mechanism for volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which validate the advantage of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.
Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation rates. However, the membranes use has been limited mostly to aqueous solutions because GO membranes appear to be impermeable to organic solvents, a phenomenon not fully understood yet. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from flakes with large sizes of ~ 10-20 micron. Without sacrificing their sieving characteristics, such membranes can be made exceptionally thin, down to ~ 10 nm, which translates into fast permeation of not only water but also organic solvents. We attribute the organic solvent permeation and sieving properties of ultrathin GO laminates to the presence of randomly distributed pinholes that are interconnected by short graphene channels with a width of 1 nm. With increasing the membrane thickness, the organic solvent permeation rates decay exponentially but water continues to permeate fast, in agreement with previous reports. The application potential of our ultrathin laminates for organic-solvent nanofiltration is demonstrated by showing >99.9% rejection of various organic dyes with small molecular weights dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification, filtration and related technologies.