Do you want to publish a course? Click here

Observation of Volkov-Pankratov states in topological HgTe heterojunctions using high-frequency compressibility

61   0   0.0 ( 0 )
 Added by Bernard Placais
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well established that topological insulators sustain Dirac fermion surface states as a consequence of band inversion in the bulk. These states have a helical spin polarization and a linear dispersion with large Fermi velocity. In this article we report on a set of experimental observations indicating the existence of massive surface states. These states are confined at the interface and dominate equilibrium and transport properties at high energy and/or high electric field. By monitoring the AC admittance of HgTe topological insulator field-effect capacitors, we access the compressibility and conductivity of surface states in a broad range of energy and electric fields. The Dirac surface states are characterized by a compressibility minimum, a linear energy dependence and a high mobility persisting up to energies much larger than the transport bandgap of the bulk. New features are revealed at high energies with signatures such as conductance peaks, compressibility bumps, a strong charge metastability and a Hall resistance anomaly. These features point to the existence of excited massive surface states, responsible for a strong intersubband scattering with the Dirac states and the nucleation of metastable bulk carriers. The spectrum of excited states agrees with predictions of a phenomenological model of the topological-trivial semiconductor interface. The model accounts for the finite interface depth and the effect of electric fields. The existence of excited topological states is essential for the understanding of topological phases and opens a route for engineering and exploiting topological resources in quantum technology.



rate research

Read More

In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-orbit coupling smoothly modulated near the system edges. We show that this space modulation leads to the appearance of Volkov-Pankratov states, in addition to the topologically protected ones. We obtain this result by means of two complementary methods, one based on the effective low-energy Dirac equation description and the other on a fully numerical tight-binding approach, finding excellent agreement between the two. We then show how transport measurements might reveal the presence of Volkov-Pankratov states, and discuss possible graphene-like structures in which such states might be observed.
Preceded by the discovery of topological insulators, Dirac and Weyl semimetals have become a pivotal direction of research in contemporary condensed matter physics. While easily accessible from a theoretical viewpoint, these topological semimetals pose a serious challenge in terms of experimental synthesis and analysis to allow for their unambiguous identification. In this work, we report on detailed transport experiments on compressively strained HgTe. Due to the superior sample quality in comparison to other topological semimetallic materials, this enables us to resolve the interplay of topological surface states and semimetallic bulk states to an unprecedented degree of precision and complexity. As our gate design allows us to precisely tune the Fermi level at the Weyl and Dirac points, we identify a magnetotransport regime dominated by Weyl/Dirac bulk state conduction for small carrier densities and by topological surface state conduction for larger carrier densities. As such, similar to topological insulators, HgTe provides the archetypical reference for the experimental investigation of topological semimetals.
The integer quantum Hall effect is a well-studied phenomenon at frequencies below about 100 Hz. The plateaus in high-frequency Hall conductivity were experimentally proven to retain up to 33 GHz, but the behavior at higher frequencies has remained largely unexplored. Using continuous wave THz spectroscopy, the complex Hall conductivity of GaAs/AlGaAs heterojunctions was studied in the range of 69-1100 GHz. Above 100 GHz, the quantum plateaus are strongly smeared out and replaced by weak quantum oscillations in the real part of the conductivity. The amplitude of the oscillations decreases with increasing frequency. Near 1 THz, the Hall conductivity does not reveal any features related to the filling of Landau levels. Similar oscillations are observed in the imaginary part as well, this effect has no analogy at zero frequency. This experimental picture is in disagreement with existing theoretical considerations of the high-frequency quantum Hall effect.
Surface states of topological insulators (TIs) have been playing the central role in the majority of outstanding investigations in low-dimensional electron systems for more than 10 years. TIs based on high-quality strained HgTe films demonstrate a variety of subtle physical effects. The strain leads to a bulk band gap but limits a maximum HgTe strained film thickness, and therefore, the majority of experiments were performed on films with a thickness of less than 100 nm. Since a spatial separation of topological states is crucial for the study of a single-surface response, it is essential to increase the HgTe thickness further. In this work, by combining transport measurements together with capacitance spectroscopy, we perform an analysis of a 200-nm partially relaxed HgTe film. The Drude fit of the classical magnetotransport reveals the ambipolar electron-hole transport with a high electron mobility. A detailed analysis of Shubnikov-de Haas oscillations in both conductivity and capacitance allows us to distinguish three groups of electrons, identified as electrons on top and bottom surfaces and bulk electrons. The indirect bulk energy gap value is found to be close to zero. It is established that the significant gap decrease does not affect the surface states, which are found to be well resolved and spin nondegenerate. The presented techniques allow investigations of other three-dimensional TIs, regardless of the presence of bulk conductivity.
The coherent optical manipulation of solids is emerging as a promising way to engineer novel quantum states of matter. The strong time periodic potential of intense laser light can be used to generate hybrid photon-electron states. Interaction of light with Bloch states leads to Floquet-Bloch states which are essential in realizing new photo-induced quantum phases. Similarly, dressing of free electron states near the surface of a solid generates Volkov states which are used to study non-linear optics in atoms and semiconductors. The interaction of these two dynamic states with each other remains an open experimental problem. Here we use Time and Angle Resolved Photoemission Spectroscopy (Tr-ARPES) to selectively study the transition between these two states on the surface of the topological insulator Bi2Se3. We find that the coupling between the two strongly depends on the electron momentum, providing a route to enhance or inhibit it. Moreover, by controlling the light polarization we can negate Volkov states in order to generate pure Floquet-Bloch states. This work establishes a systematic path for the coherent manipulation of solids via light-matter interaction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا