Do you want to publish a course? Click here

Ultra-bright and efficient single photon generation based on N-V centres in nanodiamonds on a solid immersion lens

129   0   0.0 ( 0 )
 Added by Tim Schr\\\"oder
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single photon sources and thus essential components for reliable and integrated quantum information technology. A key requirement for such applications is a large photon flux and a high efficiency. Paying tribute to various attempts to maximise the single photon flux we show that collection efficiencies of photons from colour centres can be increased with a rather simple experimental setup. To do so we spin-coated nanodiamonds containing single nitrogen-vacancy colour centres on the flat surface of a ZrO2 solid immersion lens. We found stable single photon count rates of up to 853 kcts/s at saturation under continuous wave excitation while having excess to more than 100 defect centres with count rates from 400 kcts/s to 500 kcts/s. For a blinking defect centre we found count rates up to 2.4 Mcts/s for time intervals of several ten seconds. It seems to be a general feature that very high rates are accompanied by a blinking behaviour. The overall collection efficiency of our setup of up to 4.2% is the highest yet reported for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of 10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts/s thus opening the way towards diamond based on-demand single photon sources for quantum applications.



rate research

Read More

Single-photon sources represent a key enabling technology in quantum optics, and single colour centres in diamond are a promising platform to serve this purpose, due to their high quantum efficiency and photostability at room temperature. The widely studied nitrogen vacancy centres are characterized by several limitations, thus other defects have recently been considered, with a specific focus of centres emitting in the Near Infra-Red. In the present work, we report on the coupling of native near-infrared-emitting centres in high-quality single crystal diamond with Solid Immersion Lens structures fabricated by Focused Ion Beam lithography. The reported improvements in terms of light collection efficiency make the proposed system an ideal platform for the development of single-photon emitters with appealing photophysical and spectral properties.
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena. Demonstrations of such processes have, however, been limited to probabilistic sources, for instance, spontaneous parametric down-conversion or faint lasers, which cannot be triggered deterministically. Here, we demonstrate QRNG with a quantum emitter in hexagonal boron nitride; an emerging solid-state quantum source that can generate single photons on demand and operates at room temperature. We achieve true random number generation through the measurement of single photons exiting one of four integrated photonic waveguides, and subsequently, verify the randomness of the sequences in accordance with the National Institute of Standards and Technology benchmark suite. Our results open a new avenue to the fabrication of on-chip deterministic random number generators and other solid-state-based quantum-optical devices.
The combination of semiconductor quantum dots (QDs) with photonic cavities is a promising way to realize non-classical light sources with state-of-the-art performances in terms of brightness, indistinguishability and repetition rate. In the present work we demonstrate the coupling of an InGaAs/GaAs QDs emitting in the telecom O-band to a circular Bragg grating cavity. We demonstrate a broadband geometric extraction efficiency enhancement by investigating two emission lines under above-band excitation, inside and detuned from the cavity mode, respectively. In the first case, a Purcell enhancement of 4 is attained. For the latter case, an end-to-end brightness of 1.4% with a brightness at the first lens of 23% is achieved. Using p-shell pumping, a combination of high count rate with pure single-photon emission (g(2)(0) = 0.01 in saturation) is achieved. Finally a good single-photon purity (g(2)(0) = 0.13) together with a high detector count rate of 191kcps is demonstrated for a temperature of up to 77K.
Apparatus for fluorescence-based single photon generation includes collection optics and various setups for characterization. Managing this system often reveals complexity in such a way that adjusting in a small region changes optimal alignments of others. We suggest here a modular system, where the optimal alignment is given to each compartment and tested independently. Based on this concept, we built a system for single photon generation with fluorescence center in hexagonal boron nitride nano-flake, advantageous for scaling up the number of single mode fiber output and a high degree of stability. The system allowed for a practical use of single photon stream extended over an hour with a uniform count rate of small fluctuation levels.
We report operation and characterization of a lab-assembled single-photon detector based on commercial silicon avalanche photodiodes (PerkinElmer C30902SH, C30921SH). Dark count rate as low as 5 Hz was achieved by cooling the photodiodes down to -80 C. While afterpulsing increased as the photodiode temperature was decreased, total afterpulse probability did not become significant due to detectors relatively long deadtime in a passively-quenched scheme. We measured photon detection efficiency higher than 50% at 806 nm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا