We present zero field muon spin lattice relaxation measurements of a Dysprosium triangle molecular magnet. The local magnetic fields sensed by the implanted muons indicate the coexistence of static and dynamic internal magnetic fields below $T^* ~35$ K. Bulk magnetization and heat capacity measurements show no indication of magnetic ordering below this temperature. We attribute the static fields to the slow relaxation of the magnetization in the ground state of Dy3. The fluctuation time of the dynamic part of the field is estimated to be ~0.55 $mu$s at low temperatures
Graphene SU(4) quantum Hall symmetry is extended to SO(8), permitting analytical solutions for graphene in a magnetic field that break SU(4) spontaneously. We recover standard graphene SU(4) physics as one limit, but find new phases and new properties that may be relevant for understanding the ground state. The graphene SO(8) symmetry is found to be isomorphic to one that occurs extensively in nuclear structure physics, and very similar to one that describes high-temperature superconductors, suggesting deep mathematical connections among these physically-different fermionic systems.
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction $U_i$ is site dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in details (because of lack of space see the continuation in the paper).
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
Using ab initio band structure and model calculations we studied magnetic properties of one of the Mn$_4$ molecular magnets (Mn4(hmp)6), where two types of the Mn ions exist: Mn3+ and Mn2+. The direct calculation of the exchange constants in the GGA+U approximation shows that in contrast to a common belief the strongest exchange coupling is not between two Mn3+ ions (J_{bb}), but along two out of four exchange paths connecting Mn3+ and Mn2+ ions (J_{wb}). The microscopic analysis performed within the perturbation theory allowed to establish the mechanism for this largest ferromagnetic exchange constant. The charge ordering of the Mn ions results in the situation when the energy of the excited state in the exchange process is defined not by the large on-site Coulomb repulsion U, but by much smaller energy V, which stabilizes the charge ordered state. Together with strong Hunds rule coupling and specific orbital order this leads to a large ferromagnetic exchange interaction for two out of four Mn2+ --Mn3+ pairs.
Mn$_{3}$Sn is a non-collinear antiferromagnet which displays a large anomalous Hall effect at room temperature. It is believed that the principal contribution to its anomalous Hall conductivity comes from Berry curvature. Moreover, dc transport and photoemission experiments have confirmed that Mn$_{3}$Sn may be an example of a time-reversal symmetry breaking Weyl semimetal. Due to a small, but finite moment in the room temperature inverse triangular spin structure, which allows control of the Hall current with external field, this material has garnered much interest for next generation memory devices and THz spintronics applications. In this work, we report a THz range study of oriented Mn$_{3}$Sn thin films as a function of temperature. At low frequencies we found the optical conductivity can be well described by a single Drude oscillator. The plasma frequency is strongly suppressed in a temperature dependent fashion as one enters the 260 K helical phase. This may be associated with partial gapping of the Fermi surfaces that comes from breaking translational symmetry along the c-axis. The scattering rate shows quadratic temperature dependence below 200 K, highlighting the possible important role of interactions in this compound.