Do you want to publish a course? Click here

A model for vortex formation in magnetic nanodots

114   0   0.0 ( 0 )
 Added by Bismarck Costa
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Monte Carlo simulation to study the vortex nucleation on magnetic nanodots at low temperature. In our simulations, we have considered a simple microscopic two-dimensional anisotropic Heisenberg model with term to describe the anisotropy due to the presence of the nanodot edge. We have considered the thickness of the edge, which was not considered in previous works, introducing a term that controls the energy associated to the edge. Our results clearly show that the thickness of the edge has a considerable influence in the vortex nucleation on magnetic nanodots. We have obtained the hysteresis curve for several values of the surface anisotropy and skin depth parameter ($xi$). The results are in excellent agreement with experimental data.



rate research

Read More

The existence of nonlinear objects of the vortex type in two-dimensional magnetic systems presents itself as one of the most promising candidates for the construction of nanodevices, useful for storing data, and for the construction of reading and writing magnetic heads. The vortex appears as the ground state of a magnetic nanodisk whose magnetic moments interact via dipole-dipole potential?. In this work it is investigated the conditions for the formation of vortices in nanodisks in triangular, square, and hexagonal lattices as a function of the size of the lattice and of the strength of the dipole interaction D. Our results show that there is a transition line separating the vortex state from a capacitor like state. This line has a finite size scaling form depending on the size, L, of the system as Dc=D0 +1/A(?1+B*L^2)?. This behavior is obeyed by the three types of lattices. Inside the vortex phase it is possible to identify two types of vortices separated by a constant, D=Dc, line: An in-plane and an out-of-plane vortex. We observed that the out-of-plane phase does not appear for the triangular lattice. In a two layer system the extra layer of dipoles works as an effective out-of-plane anisotropy inducing a large S^z component at the center of the vortex. Also, we analyzed the mechanism for switching the out-of-plane vortex component. Contrary to some reported results, we found evidences that the mechanism is not a creation-annihilation vortex anti-vortex process.
We study in this article properties of a nanodot embedded in a support by Monte Carlo simulation. The nanodot is a piece of simple cubic lattice where each site is occupied by a mobile Heisenberg spin which can move from one lattice site to another under the effect of the temperature and its interaction with neighbors. We take into account a short-range exchange interaction between spins and a long-range dipolar interaction. We show that the ground-state configuration is a vortex around the dot central axis: the spins on the dot boundary lie in the $xy$ plane but go out of plane with a net perpendicular magnetization at the dot center. Possible applications are discussed. Finite-temperature properties are studied. We show the characteristics of the surface melting and determine the energy, the diffusion coefficient and the layer magnetizations as functions of temperature.
The phase diagram of the quasi-two-dimensional easy-plane antiferromagnetic model, with a magnetic field applied in the easy plane, is studied using the self-consistent harmonic approximation. We found a linear dependence of the transition temperature as a function of the field for large values of the field. Our results are in agreement with experimental data for the spin-1 honeycomb compound BaNi_2V_2O_3
We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach revealed a rich diffusive scenario characterized by non-Gaussian distributions and, depending on the power law exponent and also on the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare with the numerical data, finding a good agreement. Because of its simplicity and flexibility, this model can be a candidate to describe real systems governed by power laws probabilities densities.
We study the effect of perpendicular single-ion anisotropy, $-As_{text{z}}^2$, on the ground-state structure and finite-temperature properties of a two-dimensional magnetic nanodot in presence of a dipolar interaction of strength $D$. By a simulated annealing Monte Carlo method, we show that in the ground state a vortex core perpendicular to the nanodot plane emerges already in the range of moderate anisotropy values above a certain threshold level. In the giant-anisotropy regime the vortex structure is superseded by a stripe domain structure with stripes of alternate domains perpendicular to the surface of the sample. We have also observed an intermediate stage between the vortex and stripe structures, with satellite regions of tilted nonzero perpendicular magnetization around the core. At finite temperatures, at small $A$, we show by Monte Carlo simulations that there is a transition from the the in-plane vortex phase to the disordered phase characterized by a peak in the specific heat and the vanishing vortex order parameter. At stronger $A$, we observe a discontinuous transition with a large latent heat from the in-plane vortex phase to perpendicular stripe ordering phase before a total disordering at higher temperatures. In the regime of perpendicular stripe domains, namely with giant $A$, there is no phase transition at finite $T$: the stripe domains are progressively disordered with increasing $T$. Finite-size effects are shown and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا