Do you want to publish a course? Click here

Vortex Structure in Magnetic Nanodots: Dipolar Interaction, Mobile Spin Model, Phase Transition and Melting

94   0   0.0 ( 0 )
 Added by Hung Diep
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study in this article properties of a nanodot embedded in a support by Monte Carlo simulation. The nanodot is a piece of simple cubic lattice where each site is occupied by a mobile Heisenberg spin which can move from one lattice site to another under the effect of the temperature and its interaction with neighbors. We take into account a short-range exchange interaction between spins and a long-range dipolar interaction. We show that the ground-state configuration is a vortex around the dot central axis: the spins on the dot boundary lie in the $xy$ plane but go out of plane with a net perpendicular magnetization at the dot center. Possible applications are discussed. Finite-temperature properties are studied. We show the characteristics of the surface melting and determine the energy, the diffusion coefficient and the layer magnetizations as functions of temperature.



rate research

Read More

We use Monte Carlo simulation to study the vortex nucleation on magnetic nanodots at low temperature. In our simulations, we have considered a simple microscopic two-dimensional anisotropic Heisenberg model with term to describe the anisotropy due to the presence of the nanodot edge. We have considered the thickness of the edge, which was not considered in previous works, introducing a term that controls the energy associated to the edge. Our results clearly show that the thickness of the edge has a considerable influence in the vortex nucleation on magnetic nanodots. We have obtained the hysteresis curve for several values of the surface anisotropy and skin depth parameter ($xi$). The results are in excellent agreement with experimental data.
We study the effect of perpendicular single-ion anisotropy, $-As_{text{z}}^2$, on the ground-state structure and finite-temperature properties of a two-dimensional magnetic nanodot in presence of a dipolar interaction of strength $D$. By a simulated annealing Monte Carlo method, we show that in the ground state a vortex core perpendicular to the nanodot plane emerges already in the range of moderate anisotropy values above a certain threshold level. In the giant-anisotropy regime the vortex structure is superseded by a stripe domain structure with stripes of alternate domains perpendicular to the surface of the sample. We have also observed an intermediate stage between the vortex and stripe structures, with satellite regions of tilted nonzero perpendicular magnetization around the core. At finite temperatures, at small $A$, we show by Monte Carlo simulations that there is a transition from the the in-plane vortex phase to the disordered phase characterized by a peak in the specific heat and the vanishing vortex order parameter. At stronger $A$, we observe a discontinuous transition with a large latent heat from the in-plane vortex phase to perpendicular stripe ordering phase before a total disordering at higher temperatures. In the regime of perpendicular stripe domains, namely with giant $A$, there is no phase transition at finite $T$: the stripe domains are progressively disordered with increasing $T$. Finite-size effects are shown and discussed.
135 - L. A. S. Mol , B. V. Costa 2009
In this work we have used extensive Monte Carlo simulations and finite size scaling theory to study the phase transition in the dipolar Planar Rotator model (dPRM), also known as dipolar XY model. The true long-range character of the dipolar interactions were taken into account by using the Ewald summation technique. Our results for the critical exponents does not fit those from known universality classes. We observed that the specific heat is apparently non-divergent and the critical exponents are $ u=1.277(2)$, $beta=0.2065(4)$ and $gamma=2.218(5)$. The critical temperature was found to be $T_c=1.201(1)$. Our results are clearly distinct from those of a recent Renormalization Group study from Maier and Schwabl [PRB 70, 134430 (2004)] and agrees with the results from a previous study of the anisotropic Heisenberg model with dipolar interactions in a bilayer system using a cut-off in the dipolar interactions [PRB 79, 054404 (2009)].
180 - L. A. S. Mol , B. V. Costa 2013
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.
The behavior of the nonlinear susceptibility $chi_3$ and its relation to the spin-glass transition temperature $T_f$, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue $lambda_{rm AT}$ (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature $T_f$ can be traced by a divergence in the spin-glass susceptibility $chi_{rm SG}$, which presents a term inversely proportional to the replicon $lambda_{rm AT}$. As a result of a relation between $chi_{rm SG}$ and $chi_3$, the latter also presents a divergence at $T_f$, which comes as a direct consequence of $lambda_{rm AT}=0$ at $T_f$. However, our results show that, in the presence of random fields, $chi_3$ presents a rounded maximum at a temperature $T^{*}$, which does not coincide with the spin-glass transition temperature $T_f$ (i.e., $T^* > T_f$ for a given applied random field). Thus, the maximum value of $chi_3$ at $T^*$ reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that $chi_3$ still maintains a dependence on the replicon $lambda_{rm AT}$, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHo$_x$Y$_{1-x}$F$_4$ compound.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا