Do you want to publish a course? Click here

Anomalous diffusion in a symbolic model

177   0   0.0 ( 0 )
 Added by Haroldo Ribeiro
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach revealed a rich diffusive scenario characterized by non-Gaussian distributions and, depending on the power law exponent and also on the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare with the numerical data, finding a good agreement. Because of its simplicity and flexibility, this model can be a candidate to describe real systems governed by power laws probabilities densities.



rate research

Read More

We discuss anomalous relaxation processes in Davydov one-dimensional chain molecule that consists of an exciton and an acoustic phonon field as a thermal reservoir in the chain. We derive a kinetic equation for the exciton using the complex spectral representation of the Liouville-von Neumann operator. Due to the one-dimensionality, the momentum space separates into infinite sets of disjoint irreducible subspaces dynamically independent of one another. Hence, momentum relaxation occurs only within each subspace toward the Maxwell distribution. We obtain a hydrodynamic mode with transport coefficients, a sound velocity and a diffusion coefficient, defined in each subspace. Moreover, because the sound velocity has momentum dependence, phase mixing affects the broadening of the spatial distribution of the exciton in addition to the diffusion process. Due to the phase mixing the increase rate of the mean-square displacement of the exciton increases linearly with time and diverges in the long-time limit.
We decompose the anomalous diffusive behavior found in a model of aging into its fundamental constitutive causes. The model process is a sum of increments that are iterates of a chaotic dynamical system, the Pomeau-Manneville map. The increments can have long-time correlations, fat-tailed distributions and be non-stationary. Each of these properties can cause anomalous diffusion through what is known as the Joseph, Noah and Moses effects, respectively. The model can have either sub- or super-diffusive behavior, which we find is generally due to a combination of the three effects. Scaling exponents quantifying each of the three constitutive effects are calculated using analytic methods and confirmed with numerical simulations. They are then related to the scaling of the distribution of the process through a scaling relation. Finally, the importance of the Moses effect in the anomalous diffusion of experimental systems is discussed.
Recent investigations call attention to the dynamics of anomalous diffusion and its connection with basic principles of statistical mechanics. We present here a short review of those ideas and their implications.
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particles dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
An exact analytical analysis of anomalous diffusion on a fractal mesh is presented. The fractal mesh structure is a direct product of two fractal sets which belong to a main branch of backbones and side branch of fingers. The fractal sets of both backbones and fingers are constructed on the entire (infinite) $y$ and $x$ axises. To this end we suggested a special algorithm of this special construction. The transport properties of the fractal mesh is studied, in particular, subdiffusion along the backbones is obtained with the dispersion relation $langle x^2(t)ranglesim t^{beta}$, where the transport exponent $beta<1$ is determined by the fractal dimensions of both backbone and fingers. Superdiffusion with $beta>1$ has been observed as well when the environment is controlled by means of a memory kernel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا