Do you want to publish a course? Click here

Distorted mass edges at LHC from supersymmetric leptoquarks

95   0   0.0 ( 0 )
 Added by Juergen Reuter
 Publication date 2010
  fields
and research's language is English
 Authors Jurgen Reuter




Ask ChatGPT about the research

Supersymmetric (SUSY) grand unified theories based on exceptional gauge groups such as E6 have recently triggered a lot of interest. Aside from top-down motivations, they contain phenomenologically interesting states with leptoquark quantum numbers. Their SUSY partners, leptoquarkinos, will appear similar to all R-odd particles in decay cascades, but mass edges in kinematic distributions- originating from the same semiexclusive final states-will however have major differences to the corresponding edges of ordinary squarks. This distortion of standard observables bears the opportunity to detect them at the LHC, but may also pose significant confusion of underlying model assumptions, which should be handled with care and, if interpreted falsely, might even prevent a possible discovery.



rate research

Read More

The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of mu+ E_T jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.
The presence of colored particles can affect both the single and the pair Higgs productions substantially. For scalar particles, this happens if their portal couplings to the Standard Model Higgs are large and their masses are not too high. In the present work these processes are studied in the case of several leptoquarks which may appear in many beyond Standard Model theories. It is found that the constraints on the portal couplings from the single Higgs production and the decays to various channels measured by the LHC experiments still allow increased Higgs pair production rate. For the masses in the range from 180 GeV to 300 GeV, depending on the strength of such portal couplings, the Higgs pair production may reach an order to several hundred in magnitude larger rate than the Standard Model case for the 8 TeV run. Therefore, combined with the on going searches for leptoquarks by both the CMS and ATLAS, this is one of the possible scenarios to be probed directly by the current data. The current study demonstrates that if colored scalars modify scalar potentials through portal couplings, which has been studied for variety of motivations such as playing a potentially important role in electroweak phase transition, composite models or radiative neutrino masses, this fact may appear as the modified Higgs pair production.
The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the different decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.
Supersymmetry is under pressure from LHC searches requiring colored superpartners to be heavy. We demonstrate R-parity violating spectra for which the dominant signatures are not currently well searched for at the LHC. In such cases, the bounds can be as low as 800 GeV on both squarks and gluinos. We demonstrate that there are nontrivial constraints on squark and gluino masses with baryonic RPV (UDD operators) and show that in fact leptonic RPV can allow comparable or even lighter superpartners. The constraints from many searches are weakened if the LSP is significantly lighter than the colored superpartners, such that it is produced with high boost. The LSP decay products will then be collimated, leading to the miscounting of leptons or jets and causing such models to be missed even with large production cross-sections. Other leptonic RPV scenarios that evade current searches include the highly motivated case of a higgsino LSP decaying to a tau and two quarks, and the case of a long-lived LSP with a displaced decay to electrons and jets. The least constrained models can have SUSY production cross-sections of ~pb or larger, implying tens of thousands of SUSY events in the 8 TeV data. We suggest novel searches for these signatures of RPV, which would also improve the search for general new physics at the LHC.
135 - F. Franke , T. Woehrmann 1995
Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic $ep$ scattering at $sqrt{s}=1.6$ TeV. We focus on the parameter space where a Higgs particle is likely to be invisible at LEP2 and LHC. Although we choose gaugino/higgsino mixing scenarios that maximize the corresponding production rates we find only for the production of the scalar Higgs bosons in the non-supersymmetric channels non-negligible cross sections of the order of $10^2$ fb.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا