Do you want to publish a course? Click here

Production of Supersymmetric Higgs Bosons at LEP x LHC

136   0   0.0 ( 0 )
 Added by Fabian Franke
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic $ep$ scattering at $sqrt{s}=1.6$ TeV. We focus on the parameter space where a Higgs particle is likely to be invisible at LEP2 and LHC. Although we choose gaugino/higgsino mixing scenarios that maximize the corresponding production rates we find only for the production of the scalar Higgs bosons in the non-supersymmetric channels non-negligible cross sections of the order of $10^2$ fb.



rate research

Read More

The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the different decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.
We discuss NMSSM scenarios in which the lightest Higgs boson $h_1$ is consistent with the small LEP excess at about 98 GeV in $e^+e^- to Zh$ with $hto banti b$ and the heavier Higgs boson $h_2$ has the primary features of the LHC Higgs-like signals at 125 GeV, including an enhanced $gammagamma$ rate. Verification or falsification of the 98 GeV $h_1$ may be possible at the LHC during the 14 TeV run. The detection of the other NMSSM Higgs bosons at the LHC and future colliders is also discussed, as well as dark matter properties of the scenario under consideration.
We review the prospects for Central Exclusive Production (CEP) of BSM Higgs bosons at the LHC using forward proton detectors proposed to be installed at 220 m and 420 m from the ATLAS and/ or CMS. Results are presented for MSSM in standard benchmark scenarios, in scenarios compatible with the Cold Dark Matter relic abundance and other precision measurements, and for SM with a fourth generation of fermions. We show that CEP can give a valuable information about spin-parity properties of the Higgs bosons.
The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. These processes can provide important information on the $cp$-even Higgs bosons, allowing to probe interesting regions of the $MA$--$tb$ parameter plane. The sensitivity of the searches in the forward proton mode for the Higgs bosons in the so-called CDM-benchmark scenarios and the effects of fourth-generation models on the CED Higgs production are briefly discussed.
372 - Georg Weiglein 2007
Recent results on MSSM Higgs physics at the LHC are reviewed. The dependence of the LHC discovery reach in the bbar b H/A, H/A to tau^+tau^- channel on the underlying SUSY scenario is analysed. This is done by combining the latest results for the prospective CMS experimental sensitivities for an integrated luminosity of 30 or 60 fb^-1 with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in terms of the parameters governing the MSSM Higgs sector at lowest order, M_A and tan_beta. While the higgsino mass parameter mu has a significant impact on the prospective discovery reach (and correspondingly the ``LHC wedge region), it is found that the discovery reach is rather stable with respect to variations of other supersymmetric parameters. Within the discovery region a determination of the masses of the heavy neutral Higgs bosons with an accuracy of 1-4% seems feasible. It is furthermore shown that Higgs-boson production in central exclusive diffractive channels can provide important information on the properties of the neutral MSSM Higgs bosons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا