Do you want to publish a course? Click here

Phase-dependent heat transport through magnetic Josephson tunnel junctions

120   0   0.0 ( 0 )
 Added by F. S. Bergeret
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an exhaustive study of the coherent heat transport through superconductor-ferromagnet(S-F) Josephson junctions including a spin-filter (I$_{sf}$) tunneling barrier. By using the quasiclassical Keldysh Greens function technique we derive a general expression for the heat current flowing through a S/F/I$_{sf}$/F/S junction and analyze the dependence of the thermal conductance on the spin-filter efficiency, the phase difference between the superconductors and the magnetization direction of the ferromagnetic layers. In the case of non-collinear magnetizations we show explicitly the contributions to the heat current stemming from the singlet and triplet components of the superconducting condensate. We also demonstrate that the magnetothermal resistance ratio of a S/F/I$_{sf}$/F/S heat valve can be increased by the spin-filter effect under suitable conditions.



rate research

Read More

We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an advantage of SIFS junctions for superconducting qubits applications.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
Superconductor-Ferromagnet hybrid structures (SF) have attracted much interest in the last decades, due to a variety of interesting phenomena predicted and observed in these structures. One of them is the so-called inverse proximity effect. It is described by a spin polarization of Cooper pairs, which occurs not only in the ferromagnet (F), but also in the superconductor (S) yielding a finite magnetic moment $M_{text{S}}$ inside the superconductor. This effect has been predicted and experimentally studied. However, interpretation of the experimental data is mostly ambiguous. Here, we study theoretically the impact of the spin polarized Cooper pairs on the Josephson effect in an SFS junction. We show that the induced magnetic moment $M_{text{S}}$ does depend on the phase difference $varphi$ and therefore, will oscillate in time with the Josephson frequency $2eV/hbar$ if the current exceeds a critical value. Most importantly, the spin polarization in the superconductor causes a significant change in the Fraunhofer pattern, which can be easily accessed experimentally.
We study the influence of superconducting correlations on the electronic specific heat in a diffusive superconductor-normal metal-superconductor Josephson junction. We present a description of this system in the framework of the diffusive-limit Greens function theory, taking into account finite temperatures, phase difference as well as junction parameters. We find that proximity effect may lead to a substantial deviation of the specific heat as compared to that in the normal state, and that it can be largely tuned in magnitude by changing the phase difference between the superconductors. A measurement setup to confirm these predictions is also suggested.
131 - A. S. Osin , Ya. V. Fominov 2021
We consider a planar SIS-type Josephson junction between diffusive superconductors (S) through an insulating tunnel interface (I). We construct fully self-consistent perturbation theory with respect to the interface conductance. As a result, we find correction to the first Josephson harmonic and calculate the second Josephson harmonic. At arbitrary temperatures, we correct previous results for the nonsinusoidal current-phase relation in Josephson tunnel junctions, which were obtained with the help of conjectured form of solution. Our perturbation theory also describes the difference between the phases of the order parameter and of the anomalous Green functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا