Do you want to publish a course? Click here

Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking

525   0   0.0 ( 0 )
 Added by Ralf Metzler
 Publication date 2010
  fields Physics
and research's language is English
 Authors Stas Burov




Ask ChatGPT about the research

Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.



rate research

Read More

We study the spectral properties of $D$-dimensional $N=2$ supersymmetric lattice models. We find systematic departures from the eigenstate thermalization hypothesis (ETH) in the form of a degenerate set of ETH-violating supersymmetric (SUSY) doublets, also referred to as many-body scars, that we construct analytically. These states are stable against arbitrary SUSY-preserving perturbations, including inhomogeneous couplings. For the specific case of two-leg ladders, we provide extensive numerical evidence that shows how those states are the only ones violating the ETH, and discuss their robustness to SUSY-violating perturbations. Our work suggests a generic mechanism to stabilize quantum many-body scars in lattice models in arbitrary dimensions.
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particles dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
A local excitation in a quantum many-particle system evolves deterministically. A time-reversal procedure, involving the invertion of the signs of every energy and interaction, should produce an excitation revival: the Loschmidt echo (LE). If somewhat imperfect, only a fraction of the excitation will refocus. We use such a procedure to show how non-inverted weak disorder and interactions, when assisted by the natural reversible dynamics, fully degrade the LE. These perturbations enhance diffusion and evenly distribute the excitation throughout the system. Such a dynamical paradigm, called ergodicity, breaks down when either the disorder or the interactions are too strong. These extreme regimes give rise to the well known Anderson localization and Mott insulating phases, where quantum diffusion becomes restricted. Accordingly, regardless of the kinetic energy terms, the excitation remains mainly localized and out-of-equilibrium, and the system behaves non-ergodically. The LE constitutes a fair dynamical witness for the whole phase diagram since it evidences a surprising topography in which ergodic and non-ergodic phases interpenetrate each other. Furthermore, we provide an estimation for the critical lines separating the ergodic and non-ergodic phases around the Mott and Anderson transitions. The energy uncertainties introduced by disorder and interaction shift these thresholds towards stronger perturbations. Remarkably, the estimations of the critical lines are in good agreement with the phase diagram derived from the LE dynamics.
We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach revealed a rich diffusive scenario characterized by non-Gaussian distributions and, depending on the power law exponent and also on the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare with the numerical data, finding a good agreement. Because of its simplicity and flexibility, this model can be a candidate to describe real systems governed by power laws probabilities densities.
The emerging diffusive dynamics in many complex systems shows a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive-diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive-diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively described the subdiffusion-diffusion and subdiffusion-subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا