No Arabic abstract
A local excitation in a quantum many-particle system evolves deterministically. A time-reversal procedure, involving the invertion of the signs of every energy and interaction, should produce an excitation revival: the Loschmidt echo (LE). If somewhat imperfect, only a fraction of the excitation will refocus. We use such a procedure to show how non-inverted weak disorder and interactions, when assisted by the natural reversible dynamics, fully degrade the LE. These perturbations enhance diffusion and evenly distribute the excitation throughout the system. Such a dynamical paradigm, called ergodicity, breaks down when either the disorder or the interactions are too strong. These extreme regimes give rise to the well known Anderson localization and Mott insulating phases, where quantum diffusion becomes restricted. Accordingly, regardless of the kinetic energy terms, the excitation remains mainly localized and out-of-equilibrium, and the system behaves non-ergodically. The LE constitutes a fair dynamical witness for the whole phase diagram since it evidences a surprising topography in which ergodic and non-ergodic phases interpenetrate each other. Furthermore, we provide an estimation for the critical lines separating the ergodic and non-ergodic phases around the Mott and Anderson transitions. The energy uncertainties introduced by disorder and interaction shift these thresholds towards stronger perturbations. Remarkably, the estimations of the critical lines are in good agreement with the phase diagram derived from the LE dynamics.
Environment--induced decoherence causes entropy increase. It can be quantified using, e.g., the purity $varsigma={rm Tr}rho^2$. When the Hamiltonian of a quantum system is perturbed, its sensitivity to such perturbation can be measured by the Loschmidt echo $bar M(t)$. It is given by the average squared overlap between the perturbed and unperturbed state. We describe the relation between the temporal behavior of $varsigma(t)$ and $bar M(t)$. In this way we show that the decay of the Loschmidt echo can be analyzed using tools developed in the study of decoherence. In particular, for systems with a classically chaotic Hamiltonian the decay of $varsigma$ and $bar M$ has a regime where it is dominated by the classical Lyapunov exponents
Loschmidt echo (LE) is a measure of reversibility and sensitivity to perturbations of quantum evolutions. For weak perturbations its decay rate is given by the width of the local density of states (LDOS). When the perturbation is strong enough, it has been shown in chaotic systems that its decay is dictated by the classical Lyapunov exponent. However, several recent studies have shown an unexpected non-uniform decay rate as a function of the perturbation strength instead of that Lyapunov decay. Here we study the systematic behavior of this regime in perturbed cat maps. We show that some perturbations produce coherent oscillations in the width of LDOS that imprint clear signals of the perturbation in LE decay. We also show that if the perturbation acts in a small region of phase space (local perturbation) the effect is magnified and the decay is given by the width of the LDOS.
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length $xi_0$ and a correlation time $tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/tilde{tau}= tau_{c}/tau_{V}^2$, where typically $tau_{c} sim min[tau_{0},xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/tilde{tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.
Is it possible to immediately distinguish a system made by an Avogadros number of identical elements and one with a single additional one? In this work, we show that a simple experiment can do so, yielding two qualitatively and quantitatively different outcomes depending on whether the system includes an even or an odd number of elements. We consider a typical (local) quantum-quench setup and calculate a generating function of the work done, namely, the Loschmidt echo, showing that it displays different features depending on the presence or absence of topological frustration. We employ the prototypical quantum Ising chain to illustrate this phenomenology, which we argue being generic for antiferromagnetic spin chains.
Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.