Do you want to publish a course? Click here

XMM-Newton detection of the supernova remnant G304.6+0.1 (Kes 17)

136   0   0.0 ( 0 )
 Added by Jorge Ariel Combi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. We report the first detailed X-ray study of the supernova remnant (SNR) G304.6+0.1, achieved with the XMM-Newton mission. Methods. The powerful imaging capability of XMM-Newton was used to study the X-ray characteristics of the remnant at different energy ranges. The X-ray morphology and spectral properties were analyzed. In addittion, radio and mid-infrared data obtained with the Molonglo Observatory Synthesis Telescope and the Spitzer Space Telescope were used to study the association with the detected X-ray emission and to understand the structure of the SNR at differents wavelengths. Results. The SNR shows an extended and arc-like internal structure in the X-ray band with out a compact point-like source inside the remnant. We find a high column density of NH in the range 2.5-3.5x1022 cm-2, which supports a relatively distant location (d $geq$ 9.7 kpc). The X-ray spectrum exhibits at least three emission lines, indicating that the X-ray emission has a thin thermal plasma origin, although a non-thermal contribution cannot be discarded. The spectra of three different regions (north, center and south) are well represented by a combination of a non-equilibrium ionization (PSHOCK) and a power-law (PL) model. The mid-infrared observations show a bright filamentary structure along the north-south direction coincident with the NW radio shell. This suggests that Kes 17 is propagating in a non-uniform environment with high density and that the shock front is interacting with several adjacent massive molecular clouds. The good correspondence of radio and mid-infrared emissions suggests that the filamentary features are caused by shock compression. The X-ray characteristics and well-known radio parameters indicate that G304.6+0.1 is a middle-aged SNR (2.8-6.4)x104 yr old and a new member of the recently proposed group of mixed-morphology SNRs.



rate research

Read More

The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of > 20 M_sun. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Gamma ~ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates.
We report the first XMM detection of the SNR candidate G337.2+0.1 (=AX J1635.9-4719). The object shows centrally filled and diffuse X-ray emission. The emission peaks in the hard 3.0-10.0 keV band. A spatially resolved spectral study confirms that the column density of the central part of the SNR is about N_{H}~5.9 +/- 1.5*10^{22} cm^{-2} and its X-ray spectrum is well represented by a single power-law with a photon index Gamma=0.96 +/- 0.56. The non-detection of line emission in the central spectrum is consistent with synchrotron radiation from a population of relativistic electrons. Detailed spectral analysis indicates that the outer region is highly absorbed and quite softer than the inner region, with N_{H}~16.2(+/-5.2)*10^{22} cm^{-2} and kT=4.4(+/-2.8) keV. Such characteristics are already observed in other X-ray plerions. Based on the morphological and spectral X-ray information, we confirm the SNR nature of G337.2+0.1, and suggest that the central region of the source is a pulsar wind nebula (PWN), originated by an energetic though yet undetected pulsar, that is currently losing energy at a rate of ~ 10^{36} erg s^{-1}.
(Abridged) We present a spatial and spectral X-ray analysis of the Galactic supernova remnant (SNR) G352.7-0.1 using archival data from observations made with XMM-Newton and Chandra. Prior X-ray observations of this SNR revealed a thermal center-filled morphology which contrasts with a shell-like radio morphology, thus establishing G352.7$-$0.1 as a mixed-morphology SNR (MMSNRs). Our study confirms that the X-ray emission comes from the SNR interior and must be ejecta-dominated. Spectra obtained with XMM-Newton may be fit satisfactorily with a single thermal component (namely a non-equilibrium ionization component with enhanced abundances of silicon and sulfur). In contrast, spectra extracted by Chandra from certain regions of the SNR cannot always be fit by a single thermal component. For those regions, a second thermal component with solar abundances or two thermal components with different temperatures and thawed silicon and sulfur abundances (respectively) can generate a statistically-acceptable fit. We argue that the former scenario is more physically-plausible: based on parameters of our spectral fits, we calculate physical parameters including X-ray-emitting mass (about 45 solar masses, for solar abundances). We find no evidence for overionization in the X-ray emitting plasma associated with the SNR: this phenomenon has been seen in other MMSNRs. We have conducted a search for a neutron star within the SNR using a hard (2-10 keV) Chandra image but could not identify a firm candidate. We also present (for the first time) the detection of infrared emission from this SNR as detected at 24 micron by MIPS aboard Spitzer. Finally, we discuss the properties of G352.7-0.1 in the context of other ejecta-dominated MMSNRs.
382 - J. H. K. Wu 2011
We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.
Deep optical CCD images of the supernova remnant G 32.8-0.1 were obtained where filamentary and diffuse emission was discovered. The images were acquired in the emission lines of Halpha+[N II] and [S II]. Filamentary and diffuse structures are detected in most areas of the remnant, while no significant [O III] emission is present. The flux-calibrated images suggest that the optical emission originates from shock-heated gas since the [S II]/Halpha ratio is greater than 1.2. The Spitzer images at 8 micron and 24 micron show a few filamentary structures to be correlated with the optical filaments, while the radio emission at 1.4 GHz in the same area is found to be very well correlated with the brightest optical filaments. Furthermore, the results from deep long-slit spectra also support the origin of the emission to be from shock-heated gas ([S II]/Halpha > 1.5). The absence of [O III] emission indicates slow shocks velocities into the interstellar clouds (< 100 km/s), while the [S II] 6716/6731 ratio indicates electron densities up to ~200 cm^{-3}. Finally, the Halpha emission is measured to lie between 1.8 to 4.6 x 10^{-17} erg/s/cm^2/arcsec^2, while from VGPS HI images a distance to the SNR is estimated to be between 6 to 8.5 kpc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا